A166553 Triangle read by rows: T(n, k) = [x^k]( (n+2)!*(3*EulerE(n, x+1) - EulerE(n, x))/4 ).
1, 3, 3, 0, 24, 12, -30, 0, 180, 60, 0, -720, 0, 1440, 360, 2520, 0, -12600, 0, 12600, 2520, 0, 120960, 0, -201600, 0, 120960, 20160, -771120, 0, 3810240, 0, -3175200, 0, 1270080, 181440, 0, -61689600, 0, 101606400, 0, -50803200, 0, 14515200, 1814400
Offset: 0
Examples
Triangle begins as: 1; 3, 3; 0, 24, 12; -30, 0, 180, 60; 0, -720, 0, 1440, 360; 2520, 0, -12600, 0, 12600, 2520; 0, 120960, 0, -201600, 0, 120960, 20160; -771120, 0, 3810240, 0, -3175200, 0, 1270080, 181440;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
m:= 13; R
:=PowerSeriesRing(Integers(), m+1); EulerE:= func< n | (2^(n+1)/(n+1))*( Evaluate(BernoulliPolynomial(n+1), 1/2) - 2^(n+1)*Evaluate(BernoulliPolynomial(n+1), 1/4) ) >; f:= func< n,x | (Factorial(n+2)/2)*( 3*x^n - 2*(&+[ Binomial(n,j)*(EulerE(j)/2^j)*(x - 1/2)^(n-j): j in [0..n]]) ) >; A166553:= func< n,k | Coefficient(R!( f(n,x) ), k) >; [A166553(n,k): k in [0..n], n in [0..m]]; // G. C. Greubel, Nov 30 2024 -
Mathematica
(* first program *) p[t_]= Exp[x*t](3*Exp[t] - 1)/(Exp[t] + 1); With[{m=12}, Table[(n!*(n+2)!/2)*CoefficientList[SeriesCoefficient[ Series[p[t], {t,0,m+1}], n], x], {n,0,m}]]//Flatten (* Second program *) f[n_, x_]:= (n+2)!*(3*EulerE[n, x+1] - EulerE[n, x])/4; A166553[n_, k_]:= Coefficient[Series[f[n, x], {x,0,n}], x, k]; Table[A166553[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 30 2024 *)
-
SageMath
def f(n,x): return (factorial(n+2)/2)*( 3*x^n - 2*sum( binomial(n,j)*euler_number(j)*(x-1/2)^(n-j)/2^j for j in range(n+1)) ) def A166553(n,k): return ( f(n,x) ).series(x,n+1).list()[k] print(flatten([[A166553(n,k) for k in range(n+1)] for n in range(14)])) # G. C. Greubel, Nov 30 2024
Formula
T(n, k) = [x^k]( p(n, x) ), where p(n, x) = (n!*(n+2)!/2) * [t^n]( exp(x*t)*(3*exp(t) - 1)/(exp(t) + 1) ).
From G. C. Greubel, Nov 30 2024: (Start)
T(n, k) = [x^k]( (n+2)!*(3*EulerE(n, x+1) - EulerE(n, x))/4 ).
T(n, k) = [x^k]( (1/2)*(n+2)!*( 3*x^n - 2*Sum_{j=0..n} binomial(n,j)*(EulerE(j)/2^j)*(x - 1/2)^(n-j) ) ).
T(n, n) = 3*A001715(n+2) = (n+2)!/2.
T(n, n-1) = 3*A005990(n+1). (End)
Extensions
I rewrote the definition. - N. J. A. Sloane, Dec 14 2010
New name by G. C. Greubel, Nov 30 2024
Comments