cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A327347 The 54 prime dates of each year of the form concatenate(day,month) with leading zero for months 1, 3, 7, 9 (no leading zero for days).

Original entry on oeis.org

101, 401, 601, 701, 1201, 1301, 1601, 1801, 1901, 2801, 3001, 103, 503, 1103, 1303, 2003, 2203, 2503, 2803, 2903, 107, 307, 607, 907, 1307, 1607, 1907, 2207, 2707, 109, 409, 509, 709, 809, 1009, 1109, 1409, 1609, 1709, 2309, 2609, 2909, 211, 311, 811, 911, 1511, 1811, 2011, 2111, 2311, 2411, 2711, 3011
Offset: 1

Views

Author

Wolfdieter Lang, Sep 30 2019

Keywords

Comments

All these dates come from January, March, July, September and November, sorted this d.m way, with 11, 9, 9, 13 and 12 dates, respectively, summing to 54. Note that all September dates without leading zero of month m = 9 from A327346 survive after inserting the 0. The November dates coincide, of course.

Crossrefs

Cf. A062800 (first 11 members), A101780 (9 members, starting with n = 2), A166547 (9 members, starting with n = 2), A166560 (first 13 members), A167442 (12 members, starting with n = 2), respectively.
Cf. A327346 (74 prime dates d.m without leading 0 for month), A327348 (66 prime dates m.d for non-leap years), A327349 (67 prime dates, like A327348 but for leap years), A327914 (58 prime dates m.d for non-leap years, with leading 0 for d = 1..9), A327915 (59 prime dates, like A327914, but for leap years).

Programs

  • Mathematica
    Select[Flatten@ Map[Function[{m, d},  Array[FromDigits[IntegerDigits[#]~Join~m] &, d]] @@ {PadLeft[IntegerDigits@ #, 2], Which[MemberQ[{4, 6, 9, 11}, #], 30, # == 2, 28, True, 31]} &, Select[Range[1, 12, 2], CoprimeQ[#, 10] &]], PrimeQ] (* Michael De Vlieger, Oct 03 2019 *)

A104045 Numbers k such that k9 is prime and k is a multiple of ten.

Original entry on oeis.org

10, 40, 50, 70, 80, 100, 110, 140, 160, 170, 230, 260, 290, 310, 320, 370, 440, 490, 500, 520, 530, 670, 710, 730, 800, 820, 860, 910, 920, 1000, 1070, 1090, 1190, 1210, 1240, 1280, 1300, 1310, 1330, 1370, 1400, 1580, 1720, 1750, 1760, 1790, 1900, 1930, 1960, 1970, 2050, 2080, 2210
Offset: 1

Views

Author

Parthasarathy Nambi, Mar 01 2005

Keywords

Examples

			If k =  10, then k9 =  109 (prime).
If k = 160, then k9 = 1609 (prime).
If k = 320, then k9 = 3209 (prime).
		

Crossrefs

Cf. A030433, A008592, A102700, A166560 (resulting primes).

Programs

  • Maple
    select(n-> isprime(10*n+9), [10*i$i=1..300])[];  # Alois P. Heinz, Jan 19 2024
  • Mathematica
    Select[Range[10,2210,10],PrimeQ[FromDigits[Prepend[{9},#]]]&] (* James C. McMahon, Jan 19 2024 *)
  • Python
    from sympy import isprime
    from itertools import count, islice
    def agen(): yield from (k for k in count(10, 10) if isprime(10*k+9))
    print(list(islice(agen(), 53))) # Michael S. Branicky, Jan 19 2024
Showing 1-2 of 2 results.