A166583 Number of reduced words of length n in Coxeter group on 15 generators S_i with relations (S_i)^2 = (S_i S_j)^12 = I.
1, 15, 210, 2940, 41160, 576240, 8067360, 112943040, 1581202560, 22136835840, 309915701760, 4338819824640, 60743477544855, 850408685626500, 11905721598750525, 166680102382220700, 2333521433347076700
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (13,13,13,13,13,13,13,13,13,13,13,-91).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^12)/(1-14*x+104*x^12-91*x^13) )); // G. C. Greubel, Dec 03 2024 -
Mathematica
CoefficientList[Series[(1+x)*(1-x^12)/(1 - 14*x + 104*x^12 - 91*x^13), {t, 0, 50}], t] (* G. C. Greubel, May 17 2016; Dec 03 2024 *) coxG[{12,91,-13}] (* The coxG program is at A169452 *) (* G. C. Greubel, Dec 03 2024 *)
-
SageMath
def A166583_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1+x)*(1-x^12)/(1-14*x+104*x^12-91*x^13) ).list() A166583_list(40) # G. C. Greubel, Dec 03 2024
Formula
G.f.: (t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(91*t^12 - 13*t^11 - 13*t^10 - 13*t^9 - 13*t^8 - 13*t^7 - 13*t^6 - 13*t^5 - 13*t^4 - 13*t^3 - 13*t^2 - 13*t +1).
From G. C. Greubel, Dec 03 2024: (Start)
a(n) = 13*Sum_{j=1..11} a(n-j) - 91*a(n-12).
G.f.: (1+x)*(1-x^12)/(1 - 14*x + 104*x^12 - 91*x^13). (End)
Comments