cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166584 Number of reduced words of length n in Coxeter group on 16 generators S_i with relations (S_i)^2 = (S_i S_j)^12 = I.

Original entry on oeis.org

1, 16, 240, 3600, 54000, 810000, 12150000, 182250000, 2733750000, 41006250000, 615093750000, 9226406250000, 138396093749880, 2075941406246400, 31139121093669120, 467086816404633600, 7006302246063456000
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170735, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40);
    Coefficients(R!( (1+x)*(1-x^12)/(1-15*x+119*x^12-105*x^13) )); // G. C. Greubel, Dec 04 2024
    
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^12)/(1-15*t+119*t^12-105*t^13), {t,0,50}], t] (* G. C. Greubel, May 17 2016; Dec 04 2024 *)
    coxG[{12,105,-14}] (* The coxG program is at A169452 *) (* G. C. Greubel, Dec 04 2024 *)
  • SageMath
    def A166584_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x)*(1-x^12)/(1-15*x+119*x^12-105*x^13) ).list()
    A166584_list(40) # G. C. Greubel, Dec 04 2024

Formula

G.f.: (t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(105*t^12 - 14*t^11 - 14*t^10 - 14*t^9 -14*t^8 - 14*t^7 - 14*t^6 - 14*t^5 - 14*t^4 - 14*t^3 - 14*t^2 -14*t +1).
From G. C. Greubel, Dec 04 2024: (Start)
a(n) = 14*Sum_{j=1..11} a(n-j) - 105*a(n-12).
G.f.: (1+x)*(1-x^12)/(1 - 15*x + 119*x^12 - 105*x^13). (End)