cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166592 Hankel transform of A166588(n-1).

Original entry on oeis.org

0, 1, 3, 2, 3, 1, 0, -1, -3, -2, -3, -1, 0, 1, 3, 2, 3, 1, 0, -1, -3, -2, -3, -1, 0, 1, 3, 2, 3, 1, 0, -1, -3, -2, -3, -1, 0, 1, 3, 2, 3, 1, 0, -1, -3, -2, -3, -1, 0, 1, 3, 2, 3, 1, 0, -1, -3, -2, -3, -1, 0, 1, 3, 2, 3, 1, 0, -1, -3, -2, -3, -1, 0, 1, 3, 2, 3, 1, 0, -1, -3, -2, -3, -1, 0, 1, 3
Offset: 0

Views

Author

Paul Barry, Oct 17 2009

Keywords

Comments

Hankel transform of 0,1,2,2,3,3,5,5,10,10,... is -a(n).

Programs

  • Mathematica
    CoefficientList[Series[x (1 + 3 x + x^2)/(1 - x^2 + x^4), {x, 0, 10}], x] (* or *) LinearRecurrence[{0,1,0,-1},{0,1,3,2}, 25] (* G. C. Greubel, May 18 2016 *)

Formula

G.f.: x(1+3x+x^2)/(1-x^2+x^4).
a(n) = (1-sqrt(3))*sin(5*Pi*n/6)+(1+sqrt(3))*sin(Pi*n/6).
From G. C. Greubel, May 18 2016: (Start)
a(n+12) = a(n).
a(n) = a(n-2) - a(n-4). (End)
E.g.f.: 2*sin(x/2)*(sqrt(3)*sinh(sqrt(3)*x/2) + cosh(sqrt(3)*x/2)). - Ilya Gutkovskiy, May 18 2016