cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166603 Number of reduced words of length n in Coxeter group on 21 generators S_i with relations (S_i)^2 = (S_i S_j)^12 = I.

Original entry on oeis.org

1, 21, 420, 8400, 168000, 3360000, 67200000, 1344000000, 26880000000, 537600000000, 10752000000000, 215040000000000, 4300799999999790, 86015999999991600, 1720319999999748210, 34406399999993288400
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170740, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1+x)*(1-x^12)/(1-20*x+209*x^12-190*x^13) )); // G. C. Greubel, Jan 21 2025
    
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^12)/(1-20*t+209*t^12-190*t^13), {t,0,50}], t] (* G. C. Greubel, May 18 2016; Jan 21 2025 *)
    coxG[{12,190,-19}] (* The coxG program is at A169452 *) (* G. C. Greubel, Jan 21 2025 *)
  • SageMath
    def A166603_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x)*(1-x^12)/(1-20*x+209*x^12-190*x^13) ).list()
    A166603_list(50) # G. C. Greubel, Jan 21 2025

Formula

G.f.: (t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(190*t^12 - 19*t^11 - 19*t^10 - 19*t^9 -19*t^8 -19*t^7 - 19*t^6 - 19*t^5 - 19*t^4 - 19*t^3 - 19*t^2 - 19*t +1).
From G. C. Greubel, Jan 21 2025: (Start)
a(n) = 19*Sum_{j=1..11} a(n-j) - 190*a(n-12).
G.f.: (1+x)*(1-x^12)/(1 - 20*x + 209*x^12 - 190*x^13). (End)