A166604 Numbers k such that Sum_{i=1..k} i^4 divides Product_{i=1..k} i^4.
1, 31, 59, 94, 104, 122, 133, 181, 206, 223, 244, 248, 283, 298, 318, 342, 356, 401, 406, 421, 422, 439, 444, 449, 451, 469, 479, 493, 496, 507, 528, 532, 536, 541, 555, 597, 631, 637, 643, 668, 701, 706, 712, 717, 721, 722, 754, 762, 795, 797, 801, 815, 842
Offset: 1
Keywords
Examples
a(2) = A125314(4) = 31.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..3000
Crossrefs
Programs
-
Mathematica
k = s = 1; p = 1; lst = {}; While[k < 1000, If[ Mod[p, s] == 0, AppendTo[lst, k]]; k++; s = s + k^4; p = p*k^4]; lst (* Robert G. Wilson v, Nov 02 2009 *) Module[{nn=1000,c},c=Range[nn]^4;Select[Range[nn],Divisible[Times@@ Take[ c,#], Total[Take[c,#]]]&]] (* Harvey P. Dale, Dec 18 2013 *)
Extensions
a(15)-a(53) from Robert G. Wilson v, Nov 02 2009