cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166632 Totally multiplicative sequence with a(p) = 2*(p-1) for prime p.

Original entry on oeis.org

1, 2, 4, 4, 8, 8, 12, 8, 16, 16, 20, 16, 24, 24, 32, 16, 32, 32, 36, 32, 48, 40, 44, 32, 64, 48, 64, 48, 56, 64, 60, 32, 80, 64, 96, 64, 72, 72, 96, 64, 80, 96, 84, 80, 128, 88, 92, 64, 144, 128
Offset: 1

Views

Author

Jaroslav Krizek, Oct 18 2009

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local f;
      mul((2*(f[1]-1))^f[2], f = ifactors(n)[2])
    end proc:
    map(f, [$1..100]); # Robert Israel, May 19 2016
  • Mathematica
    DirichletInverse[f_][1] = 1/f[1]; DirichletInverse[f_][n_] := DirichletInverse[f][n] = -1/f[1]*Sum[f[n/d]*DirichletInverse[f][d], {d, Most[Divisors[n]]}]; muphi[n_] := MoebiusMu[n]*EulerPhi[n]; a[m_] := DirichletInverse[muphi][m]; Table[a[m]*2^(PrimeOmega[m]), {m, 1, 100}](* G. C. Greubel, May 19 2016, based on A003958 *)
    f[p_, e_] := (2*(p-1))^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 17 2023 *)
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1/(1 - 2*(p-1)*X))[n], ", ")) \\ Vaclav Kotesovec, Mar 08 2023

Formula

Multiplicative with a(p^e) = (2*(p-1))^e. If n = Product p(k)^e(k) then a(n) = Product (2*(p(k)-1))^e(k).
a(n) = A061142(n) * A003958(n) = 2^bigomega(n) * A003958(n) = 2^A001222(n) * A003958(n).
Dirichlet g.f.: Product_{p prime} 1/(1 - 2*(p-1)*p^(-s)). - Robert Israel, May 19 2016
From Vaclav Kotesovec, Mar 08 2023: (Start)
Dirichlet g.f.: zeta(s-1)^2 * Product_{p prime} (1 - (2 - p^(2-s))/(p^s-2*p+2)).
Let f(s) = Product_{p prime} (1 - (2 - p^(2-s)) / (p^s - 2*p + 2)).
Sum_{k=1..n} a(k) ~ ((2*log(n) + 4*gamma - 1)*f(2) + 2*f'(2)) * n^2/4, where
f(2) = Product_{p prime} (1 - 2/(p^2 - 2*p + 2)) = 0.353804459718477500968617797456682002952375753701841967763205003892191...,
f'(2) = f(2) * Sum_{p prime} 2*log(p) / ((p-1) * (p^2 - 2*p + 2)) = 0.350193097012820163529213089258238034020398107720137317340667886409682...
and gamma is the Euler-Mascheroni constant A001620. (End)