A166681 Primes p which have at least one prime anagram larger than p.
13, 17, 37, 79, 107, 113, 127, 131, 137, 139, 149, 157, 163, 167, 173, 179, 181, 191, 197, 199, 239, 241, 251, 277, 281, 283, 313, 337, 347, 349, 359, 367, 373, 379, 389, 397, 419, 457, 461, 463, 467, 479, 491, 563, 569, 571, 577, 587, 593, 613
Offset: 1
Examples
13 is the first with 31 as prime anagram. 17 is the second with 71 as prime anagram. 31 has one anagram 13 but this is not >31 so 31 is not in the sequence.
Links
- R. J. Mathar, Table of n, a(n) for n = 1..1000
Programs
-
Maple
filter:= proc(p) local L,Lp,q,i; if not isprime(p) then return false fi; L:= convert(p,base,10); for Lp in combinat:-permute(L) do q:= add(Lp[i]*10^(i-1),i=1..nops(L)); if q > p and isprime(q) then return true fi od; false end proc: select(filter, [seq(i,i=13..1000,2)]); # Robert Israel, Jan 18 2023
-
Mathematica
paQ[n_]:=Length[Select[FromDigits/@Permutations[IntegerDigits[n]],#>n && PrimeQ[#]&]]>0; Select[Prime[Range[200]],paQ] (* Harvey P. Dale, Sep 23 2013 *)
-
Python
from itertools import islice from sympy.utilities.iterables import multiset_permutations from sympy import isprime, nextprime def A166681_gen(): # generator of terms p = 13 while True: for q in multiset_permutations(str(p)): if (r:=int(''.join(q)))>p and isprime(r): yield p break p = nextprime(p) A166681_list = list(islice(A166681_gen(),20)) # Chai Wah Wu, Jan 17 2023
Extensions
Definition clarified, sequence extended. - R. J. Mathar, Oct 12 2012
Comments