cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166694 A transform of the large Schroeder numbers, A006318.

Original entry on oeis.org

1, 2, 10, 52, 290, 1706, 10440, 65822, 424710, 2791340, 18622510, 125791894, 858621680, 5913143706, 41036613570, 286702877908, 2014876764170, 14234073943986, 101025202379480, 720017430722598, 5151008515543790
Offset: 0

Views

Author

Paul Barry, Oct 18 2009

Keywords

Comments

Apply the Riordan array (1,x/(1-x)^2) to the large Schroeder numbers.

Programs

  • Mathematica
    CoefficientList[Series[(1 - 3*t + t^2 - Sqrt[1 - 10*t + 19*t^2 - 10*t^3 + t^4])/(2*t), {t, 0, 50}], t] (* G. C. Greubel, May 23 2016 *)

Formula

G.f.: (1-3x+x^2-sqrt(1-10x+19x^2-10x^3+x^4))/(2x);
G.f.: 1/(1-2x/((1-x)^2-x/(1-2x/((1-x)^2-x/(1-2x/((1-x)^2-x/(1-2x/(1-... (continued fraction);
a(n) = sum{k=0..n, (0^(n+k)+C(n+k-1,2k-1))*A006318(k)}=0^n + sum{k=0..n, C(n+k-1,2k-1)*A006318(k)}.
Conjecture: (n+1)*a(n) +5*(1-2n)*a(n-1) +19*(n-2)*a(n-2) +5*(7-2*n)*a(n-3) +(n-5)*a(n-4)=0. - R. J. Mathar, Nov 16 2011