A166698 Totally multiplicative sequence with a(p) = a(p-1) - 1 for prime p.
1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1, 0, -1, 0, 1, 0, -1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, 1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, 1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Programs
-
PARI
A166698(n) = { my(f = factor(n)); prod(k=1, #f~, if(2==f[k, 1], 0, (-1)^f[k, 2])); }; \\ Antti Karttunen, Dec 19 2022
Formula
Multiplicative with a(p^e) = (a(p-1)-1)^e.
If n = Product p(k)^e(k) then a(n) = Product (a(p(k)-1)-1)^e(k).
Multiplicative with a(p^e) = 0 if p = 2, with a(p^e) = 1 if p > 2 and e is even, with a(p^e) = -1 if p > 2 and e is odd.
a(p) = -1 for prime p > 2.
a(1) = 1, for k >= 1: a(2k) = 0, a(2k - 1) = 1 if A001222(2k - 1) is even, a(2k - 1) = -1 if A001222(2k - 1) is odd, where A001222(n) = bigomega(n).
From Antti Karttunen_, Dec 19 & Dec 30 2022: (Start)
(End)
Extensions
More terms from Antti Karttunen, Sep 14 2017
Comments