cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166744 Unlucky primes: numbers which are members of both A000040 (primes) and A050505 (unlucky).

Original entry on oeis.org

2, 5, 11, 17, 19, 23, 29, 41, 47, 53, 59, 61, 71, 83, 89, 97, 101, 103, 107, 109, 113, 131, 137, 139, 149, 157, 167, 173, 179, 181, 191, 197, 199, 227, 229, 233, 239, 251, 257, 263, 269, 271, 277, 281, 293, 311, 313, 317, 337, 347, 353, 359, 373, 379, 383, 389
Offset: 1

Views

Author

Gabriel Finch (salsaman(AT)xs4all.nl), Oct 21 2009

Keywords

Comments

There are infinitely many unlucky prime numbers, in particular all those of the form 6n - 1, eliminated in the second step of Ulam's procedure for lucky numbers. - Davide Rotondo, Aug 31 2020

Crossrefs

Cf. A007528, A031157 (lucky primes).

Programs

  • Maple
    L:= [seq(2*i+1, i=0..10^3)]:
    for n from 2 while n < nops(L) do
      r:= L[n];
      L:= subsop(seq(r*i=NULL, i=1..nops(L)/r), L);
    od:
    U:= {2, seq(i,i=3..2*10^3+1,2)} minus convert(L,set):
    sort(convert(select(isprime,U),list)); # Robert Israel, Jul 26 2019
  • SageMath
    # Copy from  A000959 - (Robert FERREOL, Nov 19 2014)
    def lucky(n):
      L=list(range(1, n+1, 2)); j=1
      while L[j] <= len(L)-1:
        L=[L[i] for i in range(len(L)) if (i+1)%L[j]!=0]
        j+=1
      return(L)
    [ p for p in prime_range(1000) if p not in lucky(1000) ] # Hauke Löffler, Jul 26 2019