cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A166753 Partial sums of A166752.

Original entry on oeis.org

1, 2, 5, 6, 17, 18, 61, 62, 233, 234, 917, 918, 3649, 3650, 14573, 14574, 58265, 58266, 233029, 233030, 932081, 932082, 3728285, 3728286, 14913097, 14913098, 59652341, 59652342, 238609313, 238609314, 954437197, 954437198, 3817748729, 3817748730
Offset: 0

Views

Author

Paul Barry, Oct 21 2009

Keywords

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x-2*x^2-4*x^3)/((1-x)*(1-5*x^2+4*x^4)) )); // G. C. Greubel, Jun 06 2019
    
  • Mathematica
    LinearRecurrence[{1,5,-5,-4,4}, {1,2,5,6,17}, 40] (* G. C. Greubel, May 24 2016 *)
    Accumulate[LinearRecurrence[{0,5,0,-4},{1,1,3,1},40]] (* Harvey P. Dale, Aug 12 2024 *)
  • PARI
    my(x='x+O('x^40)); Vec((1+x-2*x^2-4*x^3)/((1-x)*(1-5*x^2+4*x^4))) \\ G. C. Greubel, Sep 30 2017
    
  • Sage
    ((1+x-2*x^2-4*x^3)/((1-x)*(1-5*x^2+4*x^4))).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jun 06 2019

Formula

G.f.: (1+x-2*x^2-4*x^3)/((1-x)*(1-5*x^2+4*x^4)).
a(n) = a(n+1) + 5*a(n+2) - 5*a(n-3) - 4*a(n-4) + 4*a(n-5).
a(n) = (4/3)*A061547(n+1) - (1/3)*A166754(n).
a(n) = (4/3)*A061547(n+1) - (1/3)*A000975(n) + (4/3)*A011377(n-2).
Showing 1-1 of 1 results.