A166761 Number of n X 3 1..2 arrays containing at least one of each value, and all equal values connected.
4, 30, 106, 292, 712, 1618, 3518, 7432, 15404, 31526, 63986, 129164, 259824, 521498, 1045254, 2093232, 4189716, 8383278, 16771066, 33547380, 67100824, 134208610, 268425166, 536859352, 1073728892, 2147469238, 4294951298, 8589916892
Offset: 1
Keywords
Examples
Some solutions for n=4 ...2.2.2...2.2.2...1.1.2...1.1.1...2.1.1...1.1.1...1.2.2...1.2.2...1.1.1 ...2.1.1...1.2.2...1.2.2...2.2.1...2.2.2...2.1.1...1.2.2...1.2.2...1.2.1 ...2.1.1...1.2.1...1.2.2...2.2.1...2.2.2...2.2.1...1.1.2...1.1.2...1.2.1 ...2.2.1...1.1.1...1.1.2...2.2.1...2.2.2...2.2.2...2.2.2...1.1.1...1.1.1 ------ ...1.2.2...2.2.2...1.1.2...1.1.1...1.1.1...1.1.2...1.2.2...1.2.2...1.1.1 ...1.1.2...2.1.2...1.1.2...2.2.1...1.1.2...1.1.2...1.1.2...1.2.1...1.1.1 ...1.1.2...1.1.1...1.2.2...2.2.1...1.1.2...1.1.2...1.1.2...1.1.1...2.2.1 ...1.1.1...1.1.1...1.1.1...1.1.1...1.1.1...1.1.1...2.2.2...1.1.1...2.1.1
Links
- R. H. Hardin, Table of n, a(n) for n=1..41
- Index entries for linear recurrences with constant coefficients, signature (6,-14,16,-9,2)
Formula
Empirical: a(n) = 6*a(n-1) - 14*a(n-2) + 16*a(n-3) -9*a(n-4) + 2*a(n-5).
From G. C. Greubel, May 26 2016: (Start)
Empirical a(n) = (3*2^(n + 5) - 2*n^3 - 9*n^2 - 73*n - 96)/3.
Empirical G.f.: (1/3)*( 96/(1 - 2*x) + 6*(-16 + 34*x - 25*x^2 + 5*x^3)/(1 - x)^4 ).
Empirical E.g.f.: (1/3)*(96*exp(x) - (96 + 84*x + 15*x^2 + 2*x^3 ) )*exp(x). (End)
From Andrew Howroyd, Dec 12 2024: (Start)
The above empirical formulas are correct.
a(n) = 2*A378933(n).
(End)