cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A252976 T(n,k) = Number of n X k nonnegative integer arrays with upper left 0 and lower right n+k-5 and value increasing by 0 or 1 with every step right or down.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 4, 13, 18, 13, 4, 10, 61, 153, 153, 61, 10, 20, 192, 770, 1236, 770, 192, 20, 35, 483, 2859, 6997, 6997, 2859, 483, 35, 56, 1050, 8694, 30802, 46812, 30802, 8694, 1050, 56, 84, 2058, 22924, 112877, 248182, 248182, 112877, 22924, 2058
Offset: 1

Views

Author

R. H. Hardin, Dec 25 2014

Keywords

Comments

Table starts
..0....0......0.......1........4........10.........20..........35...........56
..0....0......1......13.......61.......192........483........1050.........2058
..0....1.....18.....153......770......2859.......8694.......22924........54272
..1...13....153....1236.....6997.....30802.....112877......359550......1024773
..4...61....770....6997....46812....248182....1100210.....4230324.....14477724
.10..192...2859...30802...248182...1592348....8528422....39423196....161160206
.20..483...8694..112877..1100210...8528422...54926890...303382053...1471499970
.35.1050..22924..359550..4230324..39423196..303382053..1988261908..11360377192
.56.2058..54272.1024773.14477724.161160206.1471499970.11360377192..75922639116
.84.3732.118057.2667554.44951694.593478797.6383377435.57644900961.447545856560

Examples

			Some solutions for n=4, k=4:
..0..0..0..0....0..0..0..1....0..0..1..1....0..1..1..1....0..1..2..3
..0..0..0..1....0..1..1..1....1..1..1..2....0..1..1..1....0..1..2..3
..0..1..1..2....1..2..2..2....1..2..2..3....1..1..2..2....0..1..2..3
..1..1..2..3....1..2..2..3....1..2..3..3....1..2..2..3....1..1..2..3
		

Crossrefs

Cf. A252876, A252930. Column 1 is A000292(n-3). Cf. A252970-A252975 (columns 2-7).

Formula

Empirical for column k:
k=1: a(n) = (1/6)*n^3 - 1*n^2 + (11/6)*n - 1
k=2: [polynomial of degree 6]
k=3: [polynomial of degree 9]
k=4: [polynomial of degree 12]
k=5: [polynomial of degree 15]
k=6: [polynomial of degree 18]
k=7: [polynomial of degree 21]
Empirical: with "n+k-3" instead of "n+k-5" T(n,k) = binomial(n+k,k) - 2, see A166810, A166812, A166813.

A166810 Number of n X 6 1..2 arrays containing at least one of each value, all equal values connected, rows considered as a single number in nondecreasing order, and columns considered as a single number in nondecreasing order.

Original entry on oeis.org

5, 26, 82, 208, 460, 922, 1714, 3001, 5003, 8006, 12374, 18562, 27130, 38758, 54262, 74611, 100945, 134594, 177098, 230228, 296008, 376738, 475018, 593773, 736279, 906190, 1107566, 1344902, 1623158, 1947790, 2324782, 2760679, 3262621, 3838378, 4496386, 5245784, 6096452, 7059050, 8145058, 9366817
Offset: 1

Views

Author

R. H. Hardin, Oct 21 2009

Keywords

Comments

This sequence (and A166812, A166813) correspond to k-tuples x with 0<= x(i+1) <= x(i) <= k except (0,0,0..) and (k,k,k...), where x(i) is the index of the first 2 in row i of the array (or 0 if none); the number of those are the binomials minus 2. - Robert Israel, Nov 23 2015

Examples

			Some solutions for n=4
...1.1.1.1.1.2...1.1.1.1.2.2...1.1.1.1.1.1...1.1.1.1.1.1...1.1.1.1.1.1
...1.1.1.1.1.2...1.1.1.1.2.2...1.1.1.1.1.1...1.1.1.1.1.2...1.1.1.1.1.2
...1.1.1.1.2.2...1.1.1.1.2.2...1.1.1.1.1.2...1.1.1.2.2.2...1.1.1.1.1.2
...1.1.1.2.2.2...1.1.1.1.2.2...1.1.1.1.2.2...2.2.2.2.2.2...1.1.1.1.1.2
------
...1.1.1.1.1.2...1.1.1.2.2.2...1.1.1.1.1.2...1.1.1.1.2.2...1.1.1.1.1.2
...1.1.2.2.2.2...1.1.2.2.2.2...1.1.1.1.2.2...1.1.1.1.2.2...1.1.1.1.1.2
...1.2.2.2.2.2...1.1.2.2.2.2...1.1.1.1.2.2...1.2.2.2.2.2...1.1.2.2.2.2
...1.2.2.2.2.2...1.1.2.2.2.2...1.1.2.2.2.2...1.2.2.2.2.2...1.1.2.2.2.2
		

Programs

  • Maple
    seq(binomial(n+6,6)-2, n=1..100); # Robert Israel, Nov 24 2015
  • PARI
    Vec(1-2/(1-x)+1/(1-x)^7 + O(x^100)) \\ Altug Alkan, Nov 24 2015

Formula

a(n) = A000579(n+6)-2. - R. J. Mathar, Nov 24 2015
G.f.: 1 - 2/(1-x) + 1/(1-x)^7. - Robert Israel, Nov 24 2015
Showing 1-2 of 2 results.