A166861 Euler transform of Fibonacci numbers.
1, 1, 2, 4, 8, 15, 30, 56, 108, 203, 384, 716, 1342, 2487, 4614, 8510, 15675, 28749, 52652, 96102, 175110, 318240, 577328, 1045068, 1888581, 3406455, 6134530, 11029036, 19799363, 35490823, 63531134, 113570988, 202767037, 361565865, 643970774, 1145636750
Offset: 0
Keywords
Examples
G.f. = 1 + x + 2*x^2 + 4*x^3 + 8*x^4 + 15*x^5 + 30*x^6 + 56*x^7 + 108*x^8 + 203*x^9 + ...
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..4550
- Loic Foissy, The Hopf algebra of Fliess operators and its dual pre-Lie algebra, 2013.
- W. S. Gray, K. Ebrahimi-Fard, Affine SISO Feedback Transformation Group and Its Faa di Bruno Hopf Algebra, arXiv:1411.0222 [math.OC], 2014.
- Vaclav Kotesovec, Asymptotics of the Euler transform of Fibonacci numbers, arXiv:1508.01796 [math.CO], Aug 07 2015
- Vaclav Kotesovec, Asymptotics of sequence A034691
Crossrefs
Programs
-
Maple
F:= proc(n) option remember; (<<1|1>, <1|0>>^n)[1, 2] end: a:= proc(n) option remember; `if`(n=0, 1, add(add(d* F(d), d=numtheory[divisors](j))*a(n-j), j=1..n)/n) end: seq(a(n), n=0..40); # Alois P. Heinz, Jan 12 2017
-
Mathematica
CoefficientList[Series[Product[1/(1-x^k)^Fibonacci[k], {k, 1, 40}], {x, 0, 40}], x] (* Vaclav Kotesovec, Aug 05 2015 *)
-
PARI
ET(v)=Vec(prod(k=1,#v,1/(1-x^k+x*O(x^#v))^v[k])) ET(vector(40,n,fibonacci(n)))
-
SageMath
def EulerTransform(a): @cached_function def b(n): if n == 0: return 1 s = sum(sum(d * a(d) for d in divisors(j)) * b(n-j) for j in (1..n)) return s//n return b a = BinaryRecurrenceSequence(1, 1) b = EulerTransform(a) print([b(n) for n in range(36)]) # Peter Luschny, Nov 11 2020
Formula
G.f.: Product_{k>0} 1/(1 - x^k)^Fibonacci(k).
a(n) ~ phi^n / (2 * sqrt(Pi) * 5^(1/8) * n^(3/4)) * exp(-1/10 + 2*5^(-1/4)*sqrt(n) + s), where s = Sum_{k>=2} phi^k / ((phi^(2*k) - phi^k - 1)*k) = 0.600476601392575912969719494850393576083765123939643511355547131467... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Aug 06 2015
G.f.: exp(Sum_{k>=1} x^k/(k*(1 - x^k - x^(2*k)))). - Ilya Gutkovskiy, May 29 2018
Extensions
First formula corrected by Vaclav Kotesovec, Aug 05 2015
Comments