cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166861 Euler transform of Fibonacci numbers.

Original entry on oeis.org

1, 1, 2, 4, 8, 15, 30, 56, 108, 203, 384, 716, 1342, 2487, 4614, 8510, 15675, 28749, 52652, 96102, 175110, 318240, 577328, 1045068, 1888581, 3406455, 6134530, 11029036, 19799363, 35490823, 63531134, 113570988, 202767037, 361565865, 643970774, 1145636750
Offset: 0

Views

Author

Keywords

Comments

In general, the sequence with g.f. Product_{k>=1} 1/(1-x^k)^Fibonacci(k+z), where z is nonnegative integer, is asymptotic to phi^(n + z/4) / (2 * sqrt(Pi) * 5^(1/8) * n^(3/4)) * exp((phi/10 - 1/2) * Fibonacci(z) - Fibonacci(z+1)/10 + 2 * 5^(-1/4) * phi^(z/2) * sqrt(n) + s), where s = Sum_{k>=2} (Fibonacci(z) + Fibonacci(z+1) * phi^k) / ((phi^(2*k) - phi^k - 1)*k) and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Aug 06 2015

Examples

			G.f. = 1 + x + 2*x^2 + 4*x^3 + 8*x^4 + 15*x^5 + 30*x^6 + 56*x^7 + 108*x^8 + 203*x^9 + ...
		

Crossrefs

Programs

  • Maple
    F:= proc(n) option remember; (<<1|1>, <1|0>>^n)[1, 2] end:
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          F(d), d=numtheory[divisors](j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Jan 12 2017
  • Mathematica
    CoefficientList[Series[Product[1/(1-x^k)^Fibonacci[k], {k, 1, 40}], {x, 0, 40}], x] (* Vaclav Kotesovec, Aug 05 2015 *)
  • PARI
    ET(v)=Vec(prod(k=1,#v,1/(1-x^k+x*O(x^#v))^v[k]))
    ET(vector(40,n,fibonacci(n)))
    
  • SageMath
    def EulerTransform(a):
        @cached_function
        def b(n):
            if n == 0: return 1
            s = sum(sum(d * a(d) for d in divisors(j)) * b(n-j) for j in (1..n))
            return s//n
        return b
    a = BinaryRecurrenceSequence(1, 1)
    b = EulerTransform(a)
    print([b(n) for n in range(36)]) # Peter Luschny, Nov 11 2020

Formula

G.f.: Product_{k>0} 1/(1 - x^k)^Fibonacci(k).
a(n) ~ phi^n / (2 * sqrt(Pi) * 5^(1/8) * n^(3/4)) * exp(-1/10 + 2*5^(-1/4)*sqrt(n) + s), where s = Sum_{k>=2} phi^k / ((phi^(2*k) - phi^k - 1)*k) = 0.600476601392575912969719494850393576083765123939643511355547131467... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Aug 06 2015
G.f.: exp(Sum_{k>=1} x^k/(k*(1 - x^k - x^(2*k)))). - Ilya Gutkovskiy, May 29 2018

Extensions

First formula corrected by Vaclav Kotesovec, Aug 05 2015