cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166869 a(n) = n * A056219(n+1).

Original entry on oeis.org

2, 4, 12, 20, 30, 54, 91, 120, 171, 250, 374, 504, 663, 854, 1170, 1568, 2074, 2628, 3325, 4180, 5313, 6754, 8602, 10656, 13100, 16042, 19683, 24024, 29464, 36000, 43834, 52768, 63228, 75582, 90510, 107856, 128575, 153178, 182208, 215400
Offset: 1

Views

Author

Roger L. Bagula, Oct 22 2009

Keywords

Crossrefs

Programs

  • Magma
    max:=50;
    R:=PowerSeriesRing(Integers(), max); b:= Coefficients(R!( (&+[x^Binomial(n+1,2)*(&*[x + 1/(1-x^j): j in [1..n]]): n in [1..Floor(Sqrt(9+8*max)/2)]]) ));
    [(n-1)*b[n]: n in [2..max-1]]; // G. C. Greubel, Nov 29 2019
    
  • Maple
    N:= 100; b:= seq(coeff(series(add(x^((1/2)*n*(n+1))*mul(x +1/(1-x^k), k=1..n), n = 1..floor((1/2)*sqrt(9+8*N))), x, N+2), x, j), j = 1..N+1); seq(n*b[n+1], n=1..N); # G. C. Greubel, Nov 29 2019
  • Mathematica
    max:= 100; b:= CoefficientList[Series[Sum[x^(n*(n+1)/2)*Product[(x +1/(1-x^k)), {k, n}], {n, Floor[Sqrt[9 +8*(max+5)]/2]}], {x, 0, max+5}], x]; Table[n*b[[n + 2]], {n, max}] (* G. C. Greubel, Nov 29 2019 *)
  • Sage
    max=50;
    def A056219_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( sum(x^binomial(n+1,2)*product((x + 1/(1-x^j)) for j in (1..n)) for n in (1..floor(sqrt(9+8*max)/2))) ).list()
    b=A056219_list(max);
    [(n-1)*b[n] for n in (2..max)] # G. C. Greubel, Nov 29 2019