cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A166884 Triangle, read by rows, that transforms diagonals in the table of coefficients of successive iterations of x+x^2+x^3 (cf. A166880).

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 15, 9, 3, 1, 114, 62, 18, 4, 1, 1159, 593, 157, 30, 5, 1, 14838, 7266, 1812, 316, 45, 6, 1, 229401, 108720, 25989, 4271, 555, 63, 7, 1, 4159662, 1922166, 445255, 70180, 8595, 890, 84, 8, 1, 86580636, 39212154, 8865333, 1354750, 159171, 15534, 1337, 108, 9, 1
Offset: 0

Views

Author

Paul D. Hanna, Nov 21 2009

Keywords

Examples

			This triangle begins:
1;
1, 1;
3, 2, 1;
15, 9, 3, 1;
114, 62, 18, 4, 1;
1159, 593, 157, 30, 5, 1;
14838, 7266, 1812, 316, 45, 6, 1;
229401, 108720, 25989, 4271, 555, 63, 7, 1;
4159662, 1922166, 445255, 70180, 8595, 890, 84, 8, 1;
86580636, 39212154, 8865333, 1354750, 159171, 15534, 1337, 108, 9, 1;
2034850425, 906623004, 201058614, 30000676, 3418245, 320070, 25963, 1912, 135, 10, 1;
53303009286, 23429034168, 5114874693, 748896765, 83336385, 7568355, 589057, 40882, 2631, 165, 11, 1; ...
Triangle A166880 of coefficients in iterations of x+x^2+x^3 begins:
1;
1,1,1;
1,2,4,6,8,8,6,3,1;
1,3,9,24,60,138,294,579,1053,1767,2739,3924,5196,6352,7152,7389,...;
1,4,16,60,216,744,2460,7818,23910,70446,200160,549006,1455132,...;
1,5,25,120,560,2540,11220,48330,203230,835080,3355950,13200648,...;
1,6,36,210,1200,6720,36930,199365,1058175,5526330,28417200,...;
1,7,49,336,2268,15078,98826,639093,4080531,25738755,160474545,...;
1,8,64,504,3920,30128,228984,1722084,12821788,94556532,...; ...
in which this triangle transforms diagonals in A166880 into each other.
The initial diagonals in triangle A166880 begin:
A166881: [1,1,4,24,216,2540,36930,639093,12821788,292495896,...];
A166882: [1,2,9,60,560,6720,98826,1722084,34700940,793894860,...];
A166883: [1,3,16,120,1200,15078,228984,4085028,83795085,1943920935,...]; ...
so that, if we treat the diagonals as column vectors, we have:
A166884 * A166881 = A166882,
A166884 * A166882 = A166883.
		

Crossrefs

Cf. A166880, columns: A166885, A166886, A166887; A229112 (row sums).

Programs

  • PARI
    {T(n, k)=local(F=x, M, N, P, m=max(n, k)); M=matrix(m+2, m+2, r, c, F=x; for(i=1, r+c-2, F=subst(F, x, x+x^2+x^3+x*O(x^(m+2)))); polcoeff(F, c)); N=matrix(m+1, m+1, r, c, M[r, c]); P=matrix(m+1, m+1, r, c, M[r+1, c]); (P~*N~^-1)[n+1, k+1]}
    for(n=0,12,for(k=0,n,print1(T(n,k),", "));print(""))

A166886 Column 2 of triangle A166884.

Original entry on oeis.org

1, 2, 9, 62, 593, 7266, 108720, 1922166, 39212154, 906623004, 23429034168, 669203550906, 20935080981744, 711872134399868, 26142553369667634, 1031146768716808794, 43475757877044427198, 1951261759908828697902
Offset: 1

Views

Author

Paul D. Hanna, Nov 21 2009

Keywords

Comments

Triangle A166884 transforms diagonals in the triangle A166880 of coefficients in the successive iterations of x+x^2+x^3.

Crossrefs

Programs

  • PARI
    {a(n)=local(F=x, M, N, P, m=n+1); M=matrix(m+2, m+2, r, c, F=x; for(i=1, r+c-2, F=subst(F, x, x+x^2+x^3+x*O(x^(m+2)))); polcoeff(F, c)); N=matrix(m+1, m+1, r, c, M[r, c]); P=matrix(m+1, m+1, r, c, M[r+1, c]); (P~*N~^-1)[n+2, 2]}

A166887 Column 3 of triangle A166884.

Original entry on oeis.org

1, 3, 18, 157, 1812, 25989, 445255, 8865333, 201058614, 5114874693, 144207579708, 4462151144553, 150316762118466, 5475746846833734, 214463847533104125, 8986421286160678944, 401112805593137715609, 18999650382886046745879
Offset: 1

Views

Author

Paul D. Hanna, Nov 21 2009

Keywords

Comments

Triangle A166884 transforms diagonals in the triangle A166880 of coefficients in the successive iterations of x+x^2+x^3.

Crossrefs

Programs

  • PARI
    {a(n)=local(F=x, M, N, P, m=n+2); M=matrix(m+2, m+2, r, c, F=x; for(i=1, r+c-2, F=subst(F, x, x+x^2+x^3+x*O(x^(m+2)))); polcoeff(F, c)); N=matrix(m+1, m+1, r, c, M[r, c]); P=matrix(m+1, m+1, r, c, M[r+1, c]); (P~*N~^-1)[n+3, 3]}
Showing 1-3 of 3 results.