A166915 a(n) = 20*a(n-1) - 64*a(n-2) - 45 for n>1; a(0) = 399, a(1) = 5695.
399, 5695, 88319, 1401855, 22384639, 357974015, 5726863359, 91626930175, 1466019348479, 23456263438335, 375300030463999, 6004799749226495, 96076793034833919, 1537228676746182655, 24595658780694282239
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (21, -84, 64).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{21, -84, 64}, {399, 5695, 88319}, 50] (* G. C. Greubel, May 28 2016 *)
-
PARI
m=15; v=concat([399, 5695], vector(m-2)); for(n=3, m, v[n]=20*v[n-1]-64*v[n-2]-45); v
Formula
a(n) = (1024*16^n + 176*4^n - 3)/3.
G.f.: (399 - 2684*x + 2240*x^2)/((1-x)*(1-4*x)*(1-16*x)).
From G. C. Greubel, May 28 2016: (Start)
a(n) = 21*a(n-1) - 84*a(n-2) + 64*a(n-3).
E.g.f.: (1/3)*(1024*exp(16*x) + 176*exp(4*x) - 3*exp(x)). (End)
Comments