A166922 E.g.f. exp(-x)*exp(exp(2*x)/2-1/2)/2 + 1/2.
1, 0, 1, 2, 10, 48, 276, 1768, 12552, 97408, 818704, 7396384, 71380640, 732058880, 7943068992, 90833753728, 1091134058624, 13728139694080, 180436251140352, 2471790031618560
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..250
- R. Suter, Two analogues of a classical sequence, J. Integer Sequences, Vol. 3 (2000), #P00.1.8.
Programs
-
Mathematica
With[{nn = 25}, CoefficientList[Series[Exp[-t]*Exp[Exp[2*t]/2 - 1/2]/2 + 1/2, {t, 0, nn}], t] Range[0, nn]!] (* G. C. Greubel, May 28 2016 *)
-
PARI
x='x+O('x^66); Vec(serlaplace(exp(-x)*exp(exp(2*x)/2-1/2)/2+1/2)) \\ Joerg Arndt, May 06 2013
-
Sage
def A166922_list(n): # n>=1 T = [0]*(n+1); R = [1] for m in (1..n-1): a,b,c = 1,0,0 for k in range(m,-1,-1): r = a + 2*(k*(b+c)+c) if k < m : T[k+2] = u; a,b,c = T[k-1],a,b u = r T[1] = u; R.append(u/2) return R A166922_list(20) # Peter Luschny, Nov 01 2012
Formula
A004211(n) = -1 + 2*sum(k=0..n, C(n,k)*a(k)). - Peter Luschny, Nov 01 2012
G.f.: 1/2 + 1/2/Q(0), where Q(k)= 1 - 2*x*k - 2*x^2*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 06 2013
a(n) ~ 2^(n - 3/2) * n^(n - 1/2) * exp(n/LambertW(2*n) - n - 1/2) / (sqrt(1 + LambertW(2*n)) * LambertW(2*n)^(n - 1/2)). - Vaclav Kotesovec, Jun 26 2022
Extensions
Definition corrected on a suggestion of M. F. Hasler, Peter Luschny, Nov 05 2012
Comments