A166930
Positive integers m such that m^4 = a^2 + b^2 and a + b = c^2 for some positive coprime integers a, b, c.
Original entry on oeis.org
2165017, 15512114571284835412957, 368440923990671763222767414151367493861848396861, 29032470413228645503712143213832535500985227130245791625262982715784415755764157625
Offset: 1
- W. Sierpinski. Pythagorean Triangles. Dover Publications, 2003, ISBN 0-486-43278-5.
A167437
Positive integers c such that c^2 = a + b and a^2 + b^2 = m^4 for some coprime integers a, b, m.
Original entry on oeis.org
1, 1343, 2372159, 9788425919, 5705771236038721, 17999572487701067948161, 173658539553825212149513251457, 75727152767742719949099952561135816319, 437825148963391521638828389137484882137402791039
Offset: 1
-
{a(n) = local(x, v); n = abs(2*n+1); (x = m-> v[abs(m)+1]); v = vector(max(3, n+1), m, 1); v[3] = -3; for(k=3, n, v[k+1] = -(13*x(k-1)*x(k-4) + 42*x(k-2)*x(k-3)) / x(k-5)); abs(x(n))}; /* Michael Somos, Nov 04 2022 */
A167438
Positive integers c such that c^2 = a + b and a^2 + b^2 = m^4 for some coprime positive integers a, b, m.
Original entry on oeis.org
2372159, 17999572487701067948161, 437825148963391521638828389137484882137402791039, 34168080993535113552180464917346868292958739991398355562578195440360113112814117057
Offset: 1
A360187
Generalized Somos-5 sequence with a(n) = (-a(n-1)*a(n-4) + 42*a(n-2)*a(n-3))/a(n-5), a(-n) = a(n), a(0) = a(1) = 1, a(2) = 3.
Original entry on oeis.org
1, 1, 3, 13, 113, 1525, 57123, 2165017, 262621633, 42422452969, 14070212996451, 7658246457672229, 10650393355715621873, 15512114571284835412957, 75606222210863532170808003, 452005526897888844293504165425
Offset: 0
2*P + T = (-8/9, -28/27). 3*P + T = (-1/169, 239/2197).
-
a[ m_] := With[{n = Abs[m]}, If[ n<3, {1, 1, 3}[[n+1]], (-a[n-1]*a[n-4] + 42*a[n-2]*a[n-3])/a[n-5]]];
-
{a(n) = my(E = ellinit([-2, 0])); sqrtint(denominator(elladd(E, [0, 0], ellmul(E, [2, 2], n))[1]))};
-
{a(n) = my(A); n = abs(n); A = vector(max(4, n+1), k, 1); A[3] = 3; A[4] = 13; for(k = 4, n, A[k+1] = (if(k%2, 4, 8)*A[k]*A[k-2] + A[k-1]^2)/A[k-3]); A[n+1]};
Showing 1-4 of 4 results.
Comments