cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166952 G.f. satisfies: A(x) = theta_3(x*A(x)) where Jacobi theta_3(x) = 1 + 2*Sum_{n>=1} x^(n^2).

Original entry on oeis.org

1, 2, 4, 8, 18, 52, 184, 688, 2512, 8866, 30824, 108088, 387952, 1426804, 5335152, 20105808, 75979458, 287627524, 1092023532, 4163964648, 15955084784, 61412039424, 237256107576, 919294150288, 3570699037984, 13900290723814
Offset: 0

Views

Author

Paul D. Hanna, Oct 26 2009

Keywords

Comments

From Paul D. Hanna, Apr 24 2010: (Start)
SPECIAL VALUES:
. at x = exp(-Pi)*Pi^(-1/4)*gamma(3/4) = 0.039775896186087627425...,
. A(x) = theta_3(exp(-Pi)) = Pi^(1/4)/gamma(3/4) = 1.0864348112133080...
RADIUS OF CONVERGENCE r:
. at r = 0.241970723224463308846762732757915397312...,
. A(r) = 2.506628552782237708927560606516272396709...
where r and A(r) are given by:
. r = z/theta_3(z) and
. A(r) = theta_3(z)
such that z is the real root nearest the origin that satisfies:
. theta_3(z) - z*theta_3'(z) = 0, which has solution:
. z = 0.6065307237718078589943387177361885081872...
(End)

Examples

			G.f.: A(x) = 1 + 2*x + 4*x^2 + 8*x^3 + 18*x^4 + 52*x^5 + 184*x^6 +...
A(x/theta_3(x)) = 1 + 2*x + 2*x^4 + 2*x^9 + 2*x^16 + 2*x^25 +...
log(A(x)) = 2*x + 4*x^2/2 + 8*x^3/3 + 24*x^4/4 + 112*x^5/5 +...+ A066535(n)*x^n/n +...
		

Crossrefs

Cf. A000122 (theta_3), A066535, A066536.

Programs

  • Mathematica
    CoefficientList[1/x*InverseSeries[Series[x/EllipticTheta[3, 0, x], {x, 0, 25}], x], x] (* Vaclav Kotesovec, Nov 16 2023 *)
    (* Calculation of constants {d,c}: *) {1/r, Sqrt[s/(2*Pi*r^2*Derivative[0, 0, 2][EllipticTheta][3, 0, r*s])]} /. FindRoot[{s == EllipticTheta[3, 0, r*s], r*Derivative[0, 0, 1][EllipticTheta][3, 0, r*s] == 1}, {r, 1/4}, {s, 5/2}, WorkingPrecision -> 70] (* Vaclav Kotesovec, Nov 16 2023 *)
  • PARI
    a(n)=local(THETA3=1+2*sum(k=1,sqrtint(n),x^(k^2))+x*O(x^n));polcoeff(THETA3^(n+1),n)/(n+1)
    
  • PARI
    a(n)=local(A=1+x); for(i=1, n, A=prod(k=1,n,(1-(-x)^k*A^k+x*O(x^n))/(1+(-x)^k*A^k+x*O(x^n)) )); polcoeff(A, n)
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    a(n)=local(A=1+x); for(i=1, n, A=prod(k=1,n,(1+(x*A)^(2*k-1)+x*O(x^n))^2*(1-(x*A)^(2*k)+x*O(x^n)) )); polcoeff(A, n)
    for(n=0,30,print1(a(n),", ")) \\ Paul D. Hanna, Jul 12 2013

Formula

G.f.: A(x) = (1/x)*Series_Reversion(x/theta_3(x)).
G.f. satisfies: A(x/theta_3(x)) = theta_3(x) = 1 + 2*Sum_{n>=1} x^(n^2).
G.f. satisfies: A(x) = Product_{n>=1} (1 - (-x)^n*A(x)^n) / (1 + (-x)^n*A(x)^n).
G.f. satisfies: A(x) = Product_{n>=1} (1 + (x*A(x))^(2*n-1))^2 * (1 - (x*A(x))^(2*n)).
G.f. satisfies: [x^n] A(x)^(1-n) = 2-2n if n>0 is square, zero otherwise.
a(n) = A066536(n)/(n+1) where A066536(n) equals the number of ways of writing n as the sum of n+1 squares.
Logarithmic derivative yields A066535, number of ways of writing n as the sum of n squares, for n>=1.
a(n) ~ c * d^n / n^(3/2), where d = 4.13273137623493996302796465513832835490078625705045019249993320055571... and c = 0.70710538549959357505200420443014251744770906948354300807129911827348... - Vaclav Kotesovec, Nov 16 2023