A166952 G.f. satisfies: A(x) = theta_3(x*A(x)) where Jacobi theta_3(x) = 1 + 2*Sum_{n>=1} x^(n^2).
1, 2, 4, 8, 18, 52, 184, 688, 2512, 8866, 30824, 108088, 387952, 1426804, 5335152, 20105808, 75979458, 287627524, 1092023532, 4163964648, 15955084784, 61412039424, 237256107576, 919294150288, 3570699037984, 13900290723814
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + 2*x + 4*x^2 + 8*x^3 + 18*x^4 + 52*x^5 + 184*x^6 +... A(x/theta_3(x)) = 1 + 2*x + 2*x^4 + 2*x^9 + 2*x^16 + 2*x^25 +... log(A(x)) = 2*x + 4*x^2/2 + 8*x^3/3 + 24*x^4/4 + 112*x^5/5 +...+ A066535(n)*x^n/n +...
Programs
-
Mathematica
CoefficientList[1/x*InverseSeries[Series[x/EllipticTheta[3, 0, x], {x, 0, 25}], x], x] (* Vaclav Kotesovec, Nov 16 2023 *) (* Calculation of constants {d,c}: *) {1/r, Sqrt[s/(2*Pi*r^2*Derivative[0, 0, 2][EllipticTheta][3, 0, r*s])]} /. FindRoot[{s == EllipticTheta[3, 0, r*s], r*Derivative[0, 0, 1][EllipticTheta][3, 0, r*s] == 1}, {r, 1/4}, {s, 5/2}, WorkingPrecision -> 70] (* Vaclav Kotesovec, Nov 16 2023 *)
-
PARI
a(n)=local(THETA3=1+2*sum(k=1,sqrtint(n),x^(k^2))+x*O(x^n));polcoeff(THETA3^(n+1),n)/(n+1)
-
PARI
a(n)=local(A=1+x); for(i=1, n, A=prod(k=1,n,(1-(-x)^k*A^k+x*O(x^n))/(1+(-x)^k*A^k+x*O(x^n)) )); polcoeff(A, n) for(n=0,30,print1(a(n),", "))
-
PARI
a(n)=local(A=1+x); for(i=1, n, A=prod(k=1,n,(1+(x*A)^(2*k-1)+x*O(x^n))^2*(1-(x*A)^(2*k)+x*O(x^n)) )); polcoeff(A, n) for(n=0,30,print1(a(n),", ")) \\ Paul D. Hanna, Jul 12 2013
Formula
G.f.: A(x) = (1/x)*Series_Reversion(x/theta_3(x)).
G.f. satisfies: A(x/theta_3(x)) = theta_3(x) = 1 + 2*Sum_{n>=1} x^(n^2).
G.f. satisfies: A(x) = Product_{n>=1} (1 - (-x)^n*A(x)^n) / (1 + (-x)^n*A(x)^n).
G.f. satisfies: A(x) = Product_{n>=1} (1 + (x*A(x))^(2*n-1))^2 * (1 - (x*A(x))^(2*n)).
G.f. satisfies: [x^n] A(x)^(1-n) = 2-2n if n>0 is square, zero otherwise.
a(n) = A066536(n)/(n+1) where A066536(n) equals the number of ways of writing n as the sum of n+1 squares.
Logarithmic derivative yields A066535, number of ways of writing n as the sum of n squares, for n>=1.
a(n) ~ c * d^n / n^(3/2), where d = 4.13273137623493996302796465513832835490078625705045019249993320055571... and c = 0.70710538549959357505200420443014251744770906948354300807129911827348... - Vaclav Kotesovec, Nov 16 2023
Comments