A066535 Number of ways of writing n as a sum of n squares.
1, 2, 4, 8, 24, 112, 544, 2368, 9328, 34802, 129064, 491768, 1938336, 7801744, 31553344, 127083328, 509145568, 2035437440, 8148505828, 32728127192, 131880275664, 532597541344, 2153312518240, 8710505815360, 35250721087168, 142743029326162, 578472382307304
Offset: 0
Keywords
Examples
There are a(3) = 8 solutions (x,y,z) of 3 = x^2 + y^2 + z^2: (1,1,1), (-1,-1,-1), 3 permutations of (1,1,-1) and 3 permutations of (1,-1,-1).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- John Holley-Reid and Jeremy Rouse, The number of representations of n as a growing number of squares, arXiv:1910.01001 [math.NT], 2019.
Crossrefs
Programs
-
Maple
b:= proc(n, t) option remember; `if`(n=0, 1, `if`(n<0 or t<1, 0, b(n, t-1) +2*add(b(n-j^2, t-1), j=1..isqrt(n)))) end: a:= n-> b(n$2): seq(a(n), n=0..30); # Alois P. Heinz, Jul 16 2014
-
Mathematica
Join[{1}, Table[SquaresR[n, n], {n, 24}]]
-
PARI
{a(n)=local(THETA3=1+2*sum(k=1,sqrtint(n),x^(k^2))+x*O(x^n)); polcoeff(THETA3^n, n)} /* Paul D. Hanna, Oct 25 2009 */
Formula
a(n) equals the coefficient of x^n in the n-th power of Jacobi theta_3(x) where theta_3(x) = 1 + 2*Sum_{n>=1} x^(n^2). - Paul D. Hanna, Oct 25 2009
a(n) ~ c * d^n / sqrt(n), where d = 4.13273137623493996302796465... (= 1/radius of convergence A166952), c = 0.2820942036723951157919967... . - Vaclav Kotesovec, Sep 12 2014
Extensions
Edited by Dean Hickerson, Jan 12 2002
a(0) added by Paul D. Hanna, Oct 25 2009
Edited by R. J. Mathar, Oct 29 2009
Comments