A379201
Column 1 of triangle A379200; a(n) = A379200(n,1) for n >= 2.
Original entry on oeis.org
1, 4, 13, 40, 130, 472, 1863, 7536, 30144, 118420, 460746, 1795688, 7059729, 28023636, 111978480, 448799712, 1800225540, 7223348112, 29006342666, 116643481440, 469861180529, 1895748851480, 7658862165738, 30973386496992, 125363177936450, 507777786429164, 2058225234116544
Offset: 2
A379206
Central terms of triangle A379200; a(n) = A379200(2*n-1,n-1) for n >= 1.
Original entry on oeis.org
1, 4, 52, 1004, 24540, 693528, 21365548, 694033712, 23369007288, 808414759404, 28582681491280, 1029170281603296, 37633688114705676, 1394397634883242504, 52252719103306019248, 1977346544751795430944, 75468918458797503960180, 2902157847756806886385760, 112350085062188369503742656
Offset: 1
A378264
G.f. A(x) satisfies 1/x = Sum_{n=-oo..+oo} A(x)^n * (1 + A(x)^n)^(n+1).
Original entry on oeis.org
1, 3, 10, 38, 164, 783, 4005, 21400, 117602, 659019, 3748736, 21588796, 125646501, 737977155, 4369147468, 26048215099, 156249597852, 942344615209, 5710710976884, 34756875588376, 212361179832431, 1302068876523950, 8009024360554817, 49407447276951470, 305609996146288873, 1895015255546957578
Offset: 1
G.f.: A(x) = x + 3*x^2 + 10*x^3 + 38*x^4 + 164*x^5 + 783*x^6 + 4005*x^7 + 21400*x^8 + 117602*x^9 + 659019*x^10 + 3748736*x^11 + 21588796*x^12 + ...
SPECIFIC VALUES.
A(t) = 1/3 at t = 0.14832728317680424382350400745104642263167027946862...
A(t) = 1/4 at t = 0.13433913917600443178696714330960568436967435856815...
A(t) = 1/5 at t = 0.12029812285398972879219940261295281978412524937754...
A(3/20) = 0.3521325903099608361455770617898033111722103407971...
A(1/7) = 0.29252723487814042698570516039406838227427731852655...
A(1/8) = 0.21500724214149512130643660913381998900575603076452...
A(1/9) = 0.17407688053908806913569913139334508111874650183559...
A(1/10) = 0.14711097488062849474543678333471254427936118296317...
-
{a(n) = my(V=[0,1],A); for(i=1,n, V=concat(V,0); A = Ser(V);
V[#V] = polcoef( sum(m=-#A,#A, A^m*(1 + A^m)^(m+1) ), #V-3); ); polcoef(A,n)}
for(n=1,40,print1(a(n),", "))
A379199
G.f. A(x) satisfies 1/x = Sum_{n=-oo..+oo} A(x)^n * (A(x)^n - 1)^(n+1).
Original entry on oeis.org
1, 1, 2, 2, 4, 9, 45, 164, 546, 1493, 3944, 10588, 32997, 112945, 396404, 1330461, 4265180, 13292275, 41778612, 135378928, 452828655, 1534394542, 5175561385, 17246318586, 56998526633, 188492707958, 628391304843, 2115131897264, 7162685531894, 24280930956521, 82152859633099
Offset: 1
G.f.: A(x) = x + x^2 + 2*x^3 + 2*x^4 + 4*x^5 + 9*x^6 + 45*x^7 + 164*x^8 + 546*x^9 + 1493*x^10 + 3944*x^11 + 10588*x^12 + ...
SPECIFIC VALUES.
A(t) = 1/2 at t = 0.28045847462385815185359630099816126187110099265378...
where t = 1/Sum_{n=-oo..+oo} (-1)^n * (2^(n-1) - 1)^n / 2^(n^2-1),
also, t = 1/Sum_{n=-oo..+oo} (2^(n-1) + 1)^(n-1) / 2^(n^2-1).
A(t) = 1/3 at t = 0.23482705460970305955617199360925350115096428519729...
where t = 1/Sum_{n=-oo..+oo} (-1)^n * (3^(n-1) - 1)^n / 3^(n^2-1),
also, t = 1/Sum_{n=-oo..+oo} (3^(n-1) + 1)^(n-1) / 3^(n^2-1).
A(t) = 1/4 at t = 0.19291797602834900465339136778069433360676297133766...
where t = 1/Sum_{n=-oo..+oo} (-1)^n * (4^(n-1) - 1)^n / 4^(n^2-1),
also, t = 1/Sum_{n=-oo..+oo} (4^(n-1) + 1)^(n-1) / 4^(n^2-1).
A(1/4) = 0.37094847513809700088242935848658292140487254454012...
where 4 = Sum_{n=-oo..+oo} A(1/4)^n * (A(1/4)^n - 1)^(n+1),
also, 4 = Sum_{n=-oo..+oo} A(1/4)^(2*n) * (A(1/4)^n + 1)^n.
A(1/5) = 0.26269124124750053890427847522296583687631694884657...
A(1/6) = 0.20631303406093749454201994379654348907240460444958...
A(1/7) = 0.17034902087146833005156413354158308643804109633470...
A(1/8) = 0.14521334319041207588863463072178319621820854479438...
-
{a(n) = my(V=[0, 1], A); for(i=1, n, V=concat(V, 0); A = Ser(V);
V[#V] = polcoef( sum(m=-#A, #A, A^m*(A^m - 1)^(m+1) ), #V-3); ); polcoef(A, n)}
for(n=1, 30, print1(a(n), ", "))
A379202
G.f. A(x) satisfies 1/x = Sum_{n=-oo..+oo} A(x)^n * (A(x)^n + 2)^(n+1).
Original entry on oeis.org
1, 4, 20, 122, 850, 6432, 51324, 424694, 3608592, 31291658, 275774228, 2462835772, 22239367632, 202713590686, 1862689951724, 17235880764264, 160466865121154, 1502055108051124, 14127846520455180, 133455751612975948, 1265563747442829216, 12043611154775588194, 114978748131733714360
Offset: 1
G.f.: A(x) = x + 4*x^2 + 20*x^3 + 122*x^4 + 850*x^5 + 6432*x^6 + 51324*x^7 + 424694*x^8 + 3608592*x^9 + 31291658*x^10 + ...
SPECIFIC VALUES.
A(t) = 1/6 at t = 0.090270773138940793847220645261976952310511883470512...
where t = 1/Sum_{n=-oo..+oo} (1 + 2*6^(n-1))^n / 6^(n^2-1).
A(t) = 1/7 at t = 0.084362907984862824662513569761745773472320783010611...
where t = 1/Sum_{n=-oo..+oo} (1 + 2*7^(n-1))^n / 7^(n^2-1).
A(t) = 1/8 at t = 0.078703999402417120618295617221021413542415048822164...
where t = 1/Sum_{n=-oo..+oo} (1 + 2*8^(n-1))^n / 8^(n^2-1).
A(1/11) = 0.16976727159020613475135380983780463368461713164010...
A(1/12) = 0.13933682309394427848416123650354034389806333559384...
A(1/15) = 0.09515898887066227963795425335824195002284059150209...
A(1/20) = 0.06369786461564277053938913595571090186089127528505...
-
{a(n) = my(V=[0, 1], A); for(i=1, n, V=concat(V, 0); A = Ser(V);
V[#V] = polcoef( sum(m=-#A, #A, A^m*(A^m + 2)^(m+1) ), #V-3); ); polcoef(A, n)}
for(n=1, 40, print1(a(n), ", "))
A379203
G.f. A(x) satisfies 1/x = Sum_{n=-oo..+oo} A(x)^n * (A(x)^n + 3)^(n+1).
Original entry on oeis.org
1, 5, 34, 290, 2820, 29629, 327301, 3744868, 43981858, 527126689, 6420981368, 79260797860, 989306411413, 12464737320229, 158320378037652, 2025016002188169, 26060398562711196, 337197048402240367, 4384067953773647268, 57245716462267462224, 750403639664344374239, 9871281245683966836462
Offset: 1
G.f.: A(x) = x + 5*x^2 + 34*x^3 + 290*x^4 + 2820*x^5 + 29629*x^6 + 327301*x^7 + 3744868*x^8 + 43981858*x^9 + 527126689*x^10 + ...
SPECIFIC VALUES.
A(t) = 1/7 at t = 0.069769772400266469707360138034033927488705716660080...
where t = 1/Sum_{n=-oo..+oo} (1 + 3*7^(n-1))^n / 7^(n^2-1).
A(t) = 1/8 at t = 0.067295105779482404156544832668824160420208234924667...
where t = 1/Sum_{n=-oo..+oo} (1 + 3*8^(n-1))^n / 8^(n^2-1).
A(t) = 1/9 at t = 0.064327556053208007320009998534415581932268509899202...
where t = 1/Sum_{n=-oo..+oo} (1 + 3*9^(n-1))^n / 9^(n^2-1).
A(t) = 1/10 at t = 0.06126924119589872239866986020862532219839002819792...
where t = 1/Sum_{n=-oo..+oo} (1 + 3*10^(n-1))^n / 10^(n^2-1).
A(1/15) = 0.12166176397390884847529063617720403039492284665035...
A(1/16) = 0.10420546336336096378642246758350885785023968035181...
A(1/20) = 0.07053009254165709187694647754531300907207762301254...
-
{a(n) = my(V=[0, 1], A); for(i=1, n, V=concat(V, 0); A = Ser(V);
V[#V] = polcoef( sum(m=-#A, #A, A^m*(A^m + 3)^(m+1) ), #V-3); ); polcoef(A, n)}
for(n=1, 40, print1(a(n), ", "))
A379204
G.f. A(x) satisfies 1/x = Sum_{n=-oo..+oo} A(x)^n * (A(x)^n + 4)^(n+1).
Original entry on oeis.org
1, 6, 52, 572, 7154, 96444, 1365480, 20015404, 301104656, 4622137698, 72110068424, 1140008607808, 18223311950352, 294049155429240, 4783093039542544, 78348659072215696, 1291254702576739650, 21396346604365855060, 356250789435149406252, 5957201829333106382128, 100003077199160840926640
Offset: 1
G.f.: A(x) = x + 6*x^2 + 52*x^3 + 572*x^4 + 7154*x^5 + 96444*x^6 + 1365480*x^7 + 20015404*x^8 + 301104656*x^9 + 4622137698*x^10 + ...
-
{a(n) = my(V=[0, 1], A); for(i=1, n, V=concat(V, 0); A = Ser(V);
V[#V] = polcoef( sum(m=-#A, #A, A^m*(A^m + 4)^(m+1) ), #V-3); ); polcoef(A, n)}
for(n=1, 40, print1(a(n), ", "))
A379205
G.f. A(x) satisfies 1/x = Sum_{n=-oo..+oo} A(x)^n * (A(x)^n + 5)^(n+1).
Original entry on oeis.org
1, 7, 74, 998, 15268, 251427, 4345869, 77751128, 1427455842, 26740178711, 509068777424, 9820550568868, 191554931918517, 3771529984556599, 74857068226445132, 1496158969938529383, 30086862802675119068, 608303992207446069349, 12358069554479794052292, 252144178158939689795128
Offset: 1
G.f.: A(x) = x + 7*x^2 + 74*x^3 + 998*x^4 + 15268*x^5 + 251427*x^6 + 4345869*x^7 + 77751128*x^8 + 1427455842*x^9 + 26740178711*x^10 + ...
-
{a(n) = my(V=[0, 1], A); for(i=1, n, V=concat(V, 0); A = Ser(V);
V[#V] = polcoef( sum(m=-#A, #A, A^m*(A^m + 5)^(m+1) ), #V-3); ); polcoef(A, n)}
for(n=1, 40, print1(a(n), ", "))
Showing 1-8 of 8 results.
Comments