cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A379200 G.f. A(x,y) satisfies 1/x = Sum_{n=-oo..+oo} A(x,y)^n * (A(x,y)^n + y)^(n+1), as a triangle of coefficients T(n,k) of x^n*y^k in A(x,y), read by rows.

Original entry on oeis.org

1, 2, 1, 4, 4, 2, 8, 13, 12, 5, 18, 40, 52, 40, 14, 52, 130, 204, 215, 140, 42, 184, 472, 813, 1004, 896, 504, 132, 688, 1863, 3430, 4588, 4816, 3738, 1848, 429, 2512, 7536, 15016, 21472, 24540, 22656, 15576, 6864, 1430, 8866, 30144, 65880, 102177, 124830, 126801, 104940, 64779, 25740, 4862, 30824, 118420, 284305, 483300, 636750, 693528, 638825, 479908, 268840, 97240, 16796
Offset: 1

Views

Author

Paul D. Hanna, Dec 20 2024

Keywords

Comments

Related identity: Sum_{n=-oo..+oo} x^n*(y - x^n)^n = 0, which holds formally for all y.

Examples

			G.f.: A(x,y) = x*(1) + x^2*(2 + y) + x^3*(4 + 4*y + 2*y^2) + x^4*(8 + 13*y + 12*y^2 + 5*y^3) + x^5*(18 + 40*y + 52*y^2 + 40*y^3 + 14*y^4) + x^6*(52 + 130*y + 204*y^2 + 215*y^3 + 140*y^4 + 42*y^5) + x^7*(184 + 472*y + 813*y^2 + 1004*y^3 + 896*y^4 + 504*y^5 + 132*y^6) + x^8*(688 + 1863*y + 3430*y^2 + 4588*y^3 + 4816*y^4 + 3738*y^5 + 1848*y^6 + 429*y^7) + x^9*(2512 + 7536*y + 15016*y^2 + 21472*y^3 + 24540*y^4 + 22656*y^5 + 15576*y^6 + 6864*y^7 + 1430*y^8) + x^10*(8866 + 30144*y + 65880*y^2 + 102177*y^3 + 124830*y^4 + 126801*y^5 + 104940*y^6 + 64779*y^7 + 25740*y^8 + 4862*y^9) + ...
where 1/x = Sum_{n=-oo..+oo} A(x,y)^n * (A(x,y)^n + y)^(n+1).
TRIANGLE.
This triangle of coefficients T(n,k) of x^n*y^k in A(x,y), for n >= 1, k=0..n-1, begins
n = 1: [1];
n = 2: [2, 1];
n = 3: [4, 4, 2];
n = 4: [8, 13, 12, 5];
n = 5: [18, 40, 52, 40, 14];
n = 6: [52, 130, 204, 215, 140, 42];
n = 7: [184, 472, 813, 1004, 896, 504, 132];
n = 8: [688, 1863, 3430, 4588, 4816, 3738, 1848, 429];
n = 9: [2512, 7536, 15016, 21472, 24540, 22656, 15576, 6864, 1430];
n =10: [8866, 30144, 65880, 102177, 124830, 126801, 104940, 64779, 25740, 4862];
n =11: [30824, 118420, 284305, 483300, 636750, 693528, 638825, 479908, 268840, 97240, 16796];
n =12: [108088, 460746, 1205402, 2242581, 3213584, 3758727, 3731794, 3154866, 2171312, 1113398, 369512, 58786];
  ...
RELATED SEQUENCES.
A000108(n) = T(n+1,n) for n >= 0 (Catalan numbers).
A028329(n) = T(n+2,n) for n >= 0.
A166952(n) = T(n+1,0) for n >= 0 (g.f. F(x) = theta_3(x*F(x))).
A379201(n) = T(n,1) for n >= 2 (column 1).
A379206(n) = T(2*n-1,n-1) for n >= 1 (central terms).
A378264(n) = Sum_{k=0..n-1} T(n,k) for n >= 1.
A379199(n) = Sum_{k=0..n-1} T(n,k) * (-1)^k for n >= 1.
A379202(n) = Sum_{k=0..n-1} T(n,k) * 2^k for n >= 1.
A379203(n) = Sum_{k=0..n-1} T(n,k) * 3^k for n >= 1.
A379204(n) = Sum_{k=0..n-1} T(n,k) * 4^k for n >= 1.
A379205(n) = Sum_{k=0..n-1} T(n,k) * 5^k for n >= 1.
ALTERNATIVE FORMAT.
This triangle may also be presented as a rectangular table like so:
[  1,    1,     2,      5,     14,      42,      132, ...];
[  2,    4,    12,     40,    140,     504,     1848, ...];
[  4,   13,    52,    215,    896,    3738,    15576, ...];
[  8,   40,   204,   1004,   4816,   22656,   104940, ...];
[ 18,  130,   813,   4588,  24540,  126801,   638825, ...];
[ 52,  472,  3430,  21472, 124830,  693528,  3731794, ...];
[184, 1863, 15016, 102177, 636750, 3758727, 21365548, ...];
...
		

Crossrefs

Cf. A166952 (column 0, y=0), A378264 (row sums), A379201 (column 1), A379206 (central terms).
Cf. A379199 (y=-1), A379202 (y=2), A379203 (y=3), A379204 (y=4), A379205 (y=5).
Cf. A000108 (main diagonal), A028329 (diagonal).

Programs

  • PARI
    {T(n,k) = my(V=[0, 1], A); for(i=1, n, V=concat(V, 0); A = Ser(V);
    V[#V] = polcoef( sum(m=-#A, #A, A^m*(A^m + y)^(m+1) ), #V-3); ); polcoef(polcoef(A, n, x), k, y)}
    for(n=1,12, for(k=0,n-1, print1(T(n,k),", "));print(""))

Formula

G.f. A(x,y) = Sum_{n>=1} Sum_{k=0..n-1} T(n,k)*x^n*y^k satisfies the following formulas.
(1) 1/x = Sum_{n=-oo..+oo} A(x,y)^n * (A(x,y)^n + y)^(n+1).
(2) 1/x = Sum_{n=-oo..+oo} A(x,y)^(2*n) * (A(x,y)^n - y)^n.
(3) A(x,y) = x * Sum_{n=-oo..+oo} A(x,y)^(n^2) / (1 + y*A(x,y)^(n+1))^n.
(4) A(x,y) = x * Sum_{n=-oo..+oo} A(x,y)^(n^2) / (1 - y*A(x,y)^(n+1))^(n+1).
(5) A(B(x,y), y) = x where B(x,y) = 1/( Sum_{n=-oo..+oo} x^n * (x^n + y)^(n+1) ).
Showing 1-1 of 1 results.