cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A379200 G.f. A(x,y) satisfies 1/x = Sum_{n=-oo..+oo} A(x,y)^n * (A(x,y)^n + y)^(n+1), as a triangle of coefficients T(n,k) of x^n*y^k in A(x,y), read by rows.

Original entry on oeis.org

1, 2, 1, 4, 4, 2, 8, 13, 12, 5, 18, 40, 52, 40, 14, 52, 130, 204, 215, 140, 42, 184, 472, 813, 1004, 896, 504, 132, 688, 1863, 3430, 4588, 4816, 3738, 1848, 429, 2512, 7536, 15016, 21472, 24540, 22656, 15576, 6864, 1430, 8866, 30144, 65880, 102177, 124830, 126801, 104940, 64779, 25740, 4862, 30824, 118420, 284305, 483300, 636750, 693528, 638825, 479908, 268840, 97240, 16796
Offset: 1

Views

Author

Paul D. Hanna, Dec 20 2024

Keywords

Comments

Related identity: Sum_{n=-oo..+oo} x^n*(y - x^n)^n = 0, which holds formally for all y.

Examples

			G.f.: A(x,y) = x*(1) + x^2*(2 + y) + x^3*(4 + 4*y + 2*y^2) + x^4*(8 + 13*y + 12*y^2 + 5*y^3) + x^5*(18 + 40*y + 52*y^2 + 40*y^3 + 14*y^4) + x^6*(52 + 130*y + 204*y^2 + 215*y^3 + 140*y^4 + 42*y^5) + x^7*(184 + 472*y + 813*y^2 + 1004*y^3 + 896*y^4 + 504*y^5 + 132*y^6) + x^8*(688 + 1863*y + 3430*y^2 + 4588*y^3 + 4816*y^4 + 3738*y^5 + 1848*y^6 + 429*y^7) + x^9*(2512 + 7536*y + 15016*y^2 + 21472*y^3 + 24540*y^4 + 22656*y^5 + 15576*y^6 + 6864*y^7 + 1430*y^8) + x^10*(8866 + 30144*y + 65880*y^2 + 102177*y^3 + 124830*y^4 + 126801*y^5 + 104940*y^6 + 64779*y^7 + 25740*y^8 + 4862*y^9) + ...
where 1/x = Sum_{n=-oo..+oo} A(x,y)^n * (A(x,y)^n + y)^(n+1).
TRIANGLE.
This triangle of coefficients T(n,k) of x^n*y^k in A(x,y), for n >= 1, k=0..n-1, begins
n = 1: [1];
n = 2: [2, 1];
n = 3: [4, 4, 2];
n = 4: [8, 13, 12, 5];
n = 5: [18, 40, 52, 40, 14];
n = 6: [52, 130, 204, 215, 140, 42];
n = 7: [184, 472, 813, 1004, 896, 504, 132];
n = 8: [688, 1863, 3430, 4588, 4816, 3738, 1848, 429];
n = 9: [2512, 7536, 15016, 21472, 24540, 22656, 15576, 6864, 1430];
n =10: [8866, 30144, 65880, 102177, 124830, 126801, 104940, 64779, 25740, 4862];
n =11: [30824, 118420, 284305, 483300, 636750, 693528, 638825, 479908, 268840, 97240, 16796];
n =12: [108088, 460746, 1205402, 2242581, 3213584, 3758727, 3731794, 3154866, 2171312, 1113398, 369512, 58786];
  ...
RELATED SEQUENCES.
A000108(n) = T(n+1,n) for n >= 0 (Catalan numbers).
A028329(n) = T(n+2,n) for n >= 0.
A166952(n) = T(n+1,0) for n >= 0 (g.f. F(x) = theta_3(x*F(x))).
A379201(n) = T(n,1) for n >= 2 (column 1).
A379206(n) = T(2*n-1,n-1) for n >= 1 (central terms).
A378264(n) = Sum_{k=0..n-1} T(n,k) for n >= 1.
A379199(n) = Sum_{k=0..n-1} T(n,k) * (-1)^k for n >= 1.
A379202(n) = Sum_{k=0..n-1} T(n,k) * 2^k for n >= 1.
A379203(n) = Sum_{k=0..n-1} T(n,k) * 3^k for n >= 1.
A379204(n) = Sum_{k=0..n-1} T(n,k) * 4^k for n >= 1.
A379205(n) = Sum_{k=0..n-1} T(n,k) * 5^k for n >= 1.
ALTERNATIVE FORMAT.
This triangle may also be presented as a rectangular table like so:
[  1,    1,     2,      5,     14,      42,      132, ...];
[  2,    4,    12,     40,    140,     504,     1848, ...];
[  4,   13,    52,    215,    896,    3738,    15576, ...];
[  8,   40,   204,   1004,   4816,   22656,   104940, ...];
[ 18,  130,   813,   4588,  24540,  126801,   638825, ...];
[ 52,  472,  3430,  21472, 124830,  693528,  3731794, ...];
[184, 1863, 15016, 102177, 636750, 3758727, 21365548, ...];
...
		

Crossrefs

Cf. A166952 (column 0, y=0), A378264 (row sums), A379201 (column 1), A379206 (central terms).
Cf. A379199 (y=-1), A379202 (y=2), A379203 (y=3), A379204 (y=4), A379205 (y=5).
Cf. A000108 (main diagonal), A028329 (diagonal).

Programs

  • PARI
    {T(n,k) = my(V=[0, 1], A); for(i=1, n, V=concat(V, 0); A = Ser(V);
    V[#V] = polcoef( sum(m=-#A, #A, A^m*(A^m + y)^(m+1) ), #V-3); ); polcoef(polcoef(A, n, x), k, y)}
    for(n=1,12, for(k=0,n-1, print1(T(n,k),", "));print(""))

Formula

G.f. A(x,y) = Sum_{n>=1} Sum_{k=0..n-1} T(n,k)*x^n*y^k satisfies the following formulas.
(1) 1/x = Sum_{n=-oo..+oo} A(x,y)^n * (A(x,y)^n + y)^(n+1).
(2) 1/x = Sum_{n=-oo..+oo} A(x,y)^(2*n) * (A(x,y)^n - y)^n.
(3) A(x,y) = x * Sum_{n=-oo..+oo} A(x,y)^(n^2) / (1 + y*A(x,y)^(n+1))^n.
(4) A(x,y) = x * Sum_{n=-oo..+oo} A(x,y)^(n^2) / (1 - y*A(x,y)^(n+1))^(n+1).
(5) A(B(x,y), y) = x where B(x,y) = 1/( Sum_{n=-oo..+oo} x^n * (x^n + y)^(n+1) ).

A378264 G.f. A(x) satisfies 1/x = Sum_{n=-oo..+oo} A(x)^n * (1 + A(x)^n)^(n+1).

Original entry on oeis.org

1, 3, 10, 38, 164, 783, 4005, 21400, 117602, 659019, 3748736, 21588796, 125646501, 737977155, 4369147468, 26048215099, 156249597852, 942344615209, 5710710976884, 34756875588376, 212361179832431, 1302068876523950, 8009024360554817, 49407447276951470, 305609996146288873, 1895015255546957578
Offset: 1

Views

Author

Paul D. Hanna, Dec 08 2024

Keywords

Comments

Related identity: Sum_{n=-oo..+oo} x^n*(y - x^n)^n = 0, which holds formally for all y.

Examples

			G.f.: A(x) = x + 3*x^2 + 10*x^3 + 38*x^4 + 164*x^5 + 783*x^6 + 4005*x^7 + 21400*x^8 + 117602*x^9 + 659019*x^10 + 3748736*x^11 + 21588796*x^12 + ...
SPECIFIC VALUES.
A(t) = 1/3 at t = 0.14832728317680424382350400745104642263167027946862...
A(t) = 1/4 at t = 0.13433913917600443178696714330960568436967435856815...
A(t) = 1/5 at t = 0.12029812285398972879219940261295281978412524937754...
A(3/20) = 0.3521325903099608361455770617898033111722103407971...
A(1/7) = 0.29252723487814042698570516039406838227427731852655...
A(1/8) = 0.21500724214149512130643660913381998900575603076452...
A(1/9) = 0.17407688053908806913569913139334508111874650183559...
A(1/10) = 0.14711097488062849474543678333471254427936118296317...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(V=[0,1],A); for(i=1,n, V=concat(V,0); A = Ser(V);
    V[#V] = polcoef( sum(m=-#A,#A, A^m*(1 + A^m)^(m+1) ), #V-3); ); polcoef(A,n)}
    for(n=1,40,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) 1/x = Sum_{n=-oo..+oo} A(x)^n * (1 + A(x)^n)^(n+1).
(2) A(x) = x * Sum_{n=-oo..+oo} A(x)^(n^2) / (1 + A(x)^(n+1))^n.
From Paul D. Hanna, Dec 20 2024: (Start)
(3) 1/x = Sum_{n=-oo..+oo} A(x)^(2*n) * (A(x)^n - 1)^n.
(4) A(x) = x * Sum_{n=-oo..+oo, n <> -1} A(x)^(n^2) / (1 - A(x)^(n+1))^(n+1).
(5) A(B(x)) = x where B(x) = 1/( Sum_{n=-oo..+oo} x^n * (x^n + 1)^(n+1) ).
(End)

A379199 G.f. A(x) satisfies 1/x = Sum_{n=-oo..+oo} A(x)^n * (A(x)^n - 1)^(n+1).

Original entry on oeis.org

1, 1, 2, 2, 4, 9, 45, 164, 546, 1493, 3944, 10588, 32997, 112945, 396404, 1330461, 4265180, 13292275, 41778612, 135378928, 452828655, 1534394542, 5175561385, 17246318586, 56998526633, 188492707958, 628391304843, 2115131897264, 7162685531894, 24280930956521, 82152859633099
Offset: 1

Views

Author

Paul D. Hanna, Dec 20 2024

Keywords

Comments

Related identity: Sum_{n=-oo..+oo} x^n*(y - x^n)^n = 0, which holds formally for all y.

Examples

			G.f.: A(x) = x + x^2 + 2*x^3 + 2*x^4 + 4*x^5 + 9*x^6 + 45*x^7 + 164*x^8 + 546*x^9 + 1493*x^10 + 3944*x^11 + 10588*x^12 + ...
SPECIFIC VALUES.
A(t) = 1/2 at t = 0.28045847462385815185359630099816126187110099265378...
  where t = 1/Sum_{n=-oo..+oo} (-1)^n * (2^(n-1) - 1)^n / 2^(n^2-1),
  also, t = 1/Sum_{n=-oo..+oo} (2^(n-1) + 1)^(n-1) / 2^(n^2-1).
A(t) = 1/3 at t = 0.23482705460970305955617199360925350115096428519729...
  where t = 1/Sum_{n=-oo..+oo} (-1)^n * (3^(n-1) - 1)^n / 3^(n^2-1),
  also, t = 1/Sum_{n=-oo..+oo} (3^(n-1) + 1)^(n-1) / 3^(n^2-1).
A(t) = 1/4 at t = 0.19291797602834900465339136778069433360676297133766...
  where t = 1/Sum_{n=-oo..+oo} (-1)^n * (4^(n-1) - 1)^n / 4^(n^2-1),
  also, t = 1/Sum_{n=-oo..+oo} (4^(n-1) + 1)^(n-1) / 4^(n^2-1).
A(1/4) = 0.37094847513809700088242935848658292140487254454012...
  where 4 = Sum_{n=-oo..+oo} A(1/4)^n * (A(1/4)^n - 1)^(n+1),
  also, 4 = Sum_{n=-oo..+oo} A(1/4)^(2*n) * (A(1/4)^n + 1)^n.
A(1/5) = 0.26269124124750053890427847522296583687631694884657...
A(1/6) = 0.20631303406093749454201994379654348907240460444958...
A(1/7) = 0.17034902087146833005156413354158308643804109633470...
A(1/8) = 0.14521334319041207588863463072178319621820854479438...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(V=[0, 1], A); for(i=1, n, V=concat(V, 0); A = Ser(V);
    V[#V] = polcoef( sum(m=-#A, #A, A^m*(A^m - 1)^(m+1) ), #V-3); ); polcoef(A, n)}
    for(n=1, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) 1/x = Sum_{n=-oo..+oo} A(x)^n * (A(x)^n - 1)^(n+1).
(2) 1/x = Sum_{n=-oo..+oo} A(x)^(2*n) * (A(x)^n + 1)^n.
(3) A(x) = x * Sum_{n=-oo..+oo} A(x)^(n^2) / (1 + A(x)^(n+1))^(n+1).
(4) A(x) = x * Sum_{n=-oo..+oo, n <> -1} A(x)^(n^2) / (1 - A(x)^(n+1))^n.
(5) A(B(x)) = x where B(x) = 1/( Sum_{n=-oo..+oo} x^n * (x^n - 1)^(n+1) ).

A379202 G.f. A(x) satisfies 1/x = Sum_{n=-oo..+oo} A(x)^n * (A(x)^n + 2)^(n+1).

Original entry on oeis.org

1, 4, 20, 122, 850, 6432, 51324, 424694, 3608592, 31291658, 275774228, 2462835772, 22239367632, 202713590686, 1862689951724, 17235880764264, 160466865121154, 1502055108051124, 14127846520455180, 133455751612975948, 1265563747442829216, 12043611154775588194, 114978748131733714360
Offset: 1

Views

Author

Paul D. Hanna, Dec 20 2024

Keywords

Comments

Related identity: Sum_{n=-oo..+oo} x^n*(y - x^n)^n = 0, which holds formally for all y.
Conjecture: a(n) is even for n > 1.
It appears that a(n) == 2 (mod 4) at n = A028309(k) for k >= 4.

Examples

			G.f.: A(x) = x + 4*x^2 + 20*x^3 + 122*x^4 + 850*x^5 + 6432*x^6 + 51324*x^7 + 424694*x^8 + 3608592*x^9 + 31291658*x^10 + ...
SPECIFIC VALUES.
A(t) = 1/6 at t = 0.090270773138940793847220645261976952310511883470512...
  where t = 1/Sum_{n=-oo..+oo} (1 + 2*6^(n-1))^n / 6^(n^2-1).
A(t) = 1/7 at t = 0.084362907984862824662513569761745773472320783010611...
  where t = 1/Sum_{n=-oo..+oo} (1 + 2*7^(n-1))^n / 7^(n^2-1).
A(t) = 1/8 at t = 0.078703999402417120618295617221021413542415048822164...
  where t = 1/Sum_{n=-oo..+oo} (1 + 2*8^(n-1))^n / 8^(n^2-1).
A(1/11) = 0.16976727159020613475135380983780463368461713164010...
A(1/12) = 0.13933682309394427848416123650354034389806333559384...
A(1/15) = 0.09515898887066227963795425335824195002284059150209...
A(1/20) = 0.06369786461564277053938913595571090186089127528505...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(V=[0, 1], A); for(i=1, n, V=concat(V, 0); A = Ser(V);
    V[#V] = polcoef( sum(m=-#A, #A, A^m*(A^m + 2)^(m+1) ), #V-3); ); polcoef(A, n)}
    for(n=1, 40, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) 1/x = Sum_{n=-oo..+oo} A(x)^n * (A(x)^n + 2)^(n+1).
(2) 1/x = Sum_{n=-oo..+oo} A(x)^(2*n) * (A(x)^n - 2)^n.
(3) A(x) = x * Sum_{n=-oo..+oo} A(x)^(n^2) / (1 + 2*A(x)^(n+1))^n.
(4) A(x) = x * Sum_{n=-oo..+oo} A(x)^(n^2) / (1 - 2*A(x)^(n+1))^(n+1).
(5) A(B(x)) = x where B(x) = 1/( Sum_{n=-oo..+oo} x^n * (x^n + 2)^(n+1) ).

A379203 G.f. A(x) satisfies 1/x = Sum_{n=-oo..+oo} A(x)^n * (A(x)^n + 3)^(n+1).

Original entry on oeis.org

1, 5, 34, 290, 2820, 29629, 327301, 3744868, 43981858, 527126689, 6420981368, 79260797860, 989306411413, 12464737320229, 158320378037652, 2025016002188169, 26060398562711196, 337197048402240367, 4384067953773647268, 57245716462267462224, 750403639664344374239, 9871281245683966836462
Offset: 1

Views

Author

Paul D. Hanna, Dec 20 2024

Keywords

Comments

Related identity: Sum_{n=-oo..+oo} x^n*(y - x^n)^n = 0, which holds formally for all y.

Examples

			G.f.: A(x) = x + 5*x^2 + 34*x^3 + 290*x^4 + 2820*x^5 + 29629*x^6 + 327301*x^7 + 3744868*x^8 + 43981858*x^9 + 527126689*x^10 + ...
SPECIFIC VALUES.
A(t) = 1/7 at t = 0.069769772400266469707360138034033927488705716660080...
  where t = 1/Sum_{n=-oo..+oo} (1 + 3*7^(n-1))^n / 7^(n^2-1).
A(t) = 1/8 at t = 0.067295105779482404156544832668824160420208234924667...
  where t = 1/Sum_{n=-oo..+oo} (1 + 3*8^(n-1))^n / 8^(n^2-1).
A(t) = 1/9 at t = 0.064327556053208007320009998534415581932268509899202...
  where t = 1/Sum_{n=-oo..+oo} (1 + 3*9^(n-1))^n / 9^(n^2-1).
A(t) = 1/10 at t = 0.06126924119589872239866986020862532219839002819792...
  where t = 1/Sum_{n=-oo..+oo} (1 + 3*10^(n-1))^n / 10^(n^2-1).
A(1/15) = 0.12166176397390884847529063617720403039492284665035...
A(1/16) = 0.10420546336336096378642246758350885785023968035181...
A(1/20) = 0.07053009254165709187694647754531300907207762301254...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(V=[0, 1], A); for(i=1, n, V=concat(V, 0); A = Ser(V);
    V[#V] = polcoef( sum(m=-#A, #A, A^m*(A^m + 3)^(m+1) ), #V-3); ); polcoef(A, n)}
    for(n=1, 40, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) 1/x = Sum_{n=-oo..+oo} A(x)^n * (A(x)^n + 3)^(n+1).
(2) 1/x = Sum_{n=-oo..+oo} A(x)^(2*n) * (A(x)^n - 3)^n.
(3) A(x) = x * Sum_{n=-oo..+oo} A(x)^(n^2) / (1 + 3*A(x)^(n+1))^n.
(4) A(x) = x * Sum_{n=-oo..+oo} A(x)^(n^2) / (1 - 3*A(x)^(n+1))^(n+1).
(5) A(B(x)) = x where B(x) = 1/( Sum_{n=-oo..+oo} x^n * (x^n + 3)^(n+1) ).

A379205 G.f. A(x) satisfies 1/x = Sum_{n=-oo..+oo} A(x)^n * (A(x)^n + 5)^(n+1).

Original entry on oeis.org

1, 7, 74, 998, 15268, 251427, 4345869, 77751128, 1427455842, 26740178711, 509068777424, 9820550568868, 191554931918517, 3771529984556599, 74857068226445132, 1496158969938529383, 30086862802675119068, 608303992207446069349, 12358069554479794052292, 252144178158939689795128
Offset: 1

Views

Author

Paul D. Hanna, Dec 20 2024

Keywords

Examples

			G.f.: A(x) = x + 7*x^2 + 74*x^3 + 998*x^4 + 15268*x^5 + 251427*x^6 + 4345869*x^7 + 77751128*x^8 + 1427455842*x^9 + 26740178711*x^10 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(V=[0, 1], A); for(i=1, n, V=concat(V, 0); A = Ser(V);
    V[#V] = polcoef( sum(m=-#A, #A, A^m*(A^m + 5)^(m+1) ), #V-3); ); polcoef(A, n)}
    for(n=1, 40, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) 1/x = Sum_{n=-oo..+oo} A(x)^n * (A(x)^n + 5)^(n+1).
(2) 1/x = Sum_{n=-oo..+oo} A(x)^(2*n) * (A(x)^n - 5)^n.
(3) A(x) = x * Sum_{n=-oo..+oo} A(x)^(n^2) / (1 + 5*A(x)^(n+1))^n.
(4) A(x) = x * Sum_{n=-oo..+oo} A(x)^(n^2) / (1 - 5*A(x)^(n+1))^(n+1).
(5) A(B(x)) = x where B(x) = 1/( Sum_{n=-oo..+oo} x^n * (x^n + 5)^(n+1) ).
Showing 1-6 of 6 results.