A166964 Number of n-colorings of the Errera graph.
0, 0, 0, 0, 960, 4669200, 1342968480, 96351366720, 2967164565120, 51747096270240, 600189633086400, 5123179804311360, 34443698001387840, 191288688014664240, 908558913657114720, 3788089202221833600, 14145018198653072640, 48056437943548695360
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Marc Timme, Frank van Bussel, Denny Fliegner, and Sebastian Stolzenberg, Counting complex disordered states by efficient pattern matching: chromatic polynomials and Potts partition functions, New J. Phys. 11 023001 (2009).
- Eric Weisstein's World of Mathematics, Errera Graph.
- Eric Weisstein's World of Mathematics, Chromatic Polynomial.
- Index entries for linear recurrences with constant coefficients, signature (18, -153, 816, -3060, 8568, -18564, 31824, -43758, 48620, -43758, 31824, -18564, 8568, -3060, 816, -153, 18, -1).
Programs
-
Maple
a:= n-> n^17 -45*n^16 +960*n^15 -12900*n^14 +122327*n^13 -868834*n^12 +4785355*n^11 -20863215*n^10 +72791543*n^9 -203886157*n^8 +456534224*n^7 -807157880*n^6 +1101393064*n^5 -1116652249*n^4 +788961246*n^3 -344673280*n^2 +69525840*n: seq(a(n), n=0..20);
-
Mathematica
a[n_] := n^17 - 45*n^16 + 960*n^15 - 12900*n^14 + 122327*n^13 - 868834*n^12 + 4785355*n^11 - 20863215*n^10 + 72791543*n^9 - 203886157*n^8 + 456534224*n^7 - 807157880*n^6 + 1101393064*n^5 - 1116652249*n^4 + 788961246*n^3 - 344673280*n^2 + 69525840*n; Table[a[n], {n, 0, 10}] (* G. C. Greubel, May 29 2016 *)
Formula
a(n) = n^17 - 45*n^16 + ... (see Maple program).
Comments