A166972 Triangle T(n,k) read by rows: T(n,k) = (n-k+1)*T(n-1,k-1) + (3*k-2)*k*T(n-1,k), initialized by T(n,1) = T(n,n) = 1.
1, 1, 1, 1, 10, 1, 1, 83, 41, 1, 1, 668, 1110, 122, 1, 1, 5349, 25982, 8210, 309, 1, 1, 42798, 572367, 432328, 44715, 714, 1, 1, 342391, 12276495, 20154955, 4635787, 202689, 1561, 1, 1, 2739136, 260203132, 879857170, 402100930, 38001292, 815680
Offset: 1
Examples
1; 1, 1; 1, 10, 1; 1, 83, 41, 1; 1, 668, 1110, 122, 1; 1, 5349, 25982, 8210, 309, 1; 1, 42798, 572367, 432328, 44715, 714, 1; 1, 342391, 12276495, 20154955, 4635787, 202689, 1561, 1; 1, 2739136, 260203132, 879857170, 402100930, 38001292, 815680, 3298, 1; 1, 21913097, 5486178860, 37015708724, 31415703470, 5658628682, 260490608, 3027488, 6821, 1;
Links
- G. C. Greubel, Table of n, a(n) for n = 1..325
Crossrefs
Cf. A111577.
Programs
-
Maple
A166972 := proc(n,k) if k = 1 or k= n then 1; else (n-k+1)*procname(n-1,k-1)+(3*k-2)*k*procname(n-1,k) ; end if; end proc: # R. J. Mathar, Nov 05 2011
-
Mathematica
A[n_, 1] := 1; A[n_, n_] := 1; A[n_, k_] := (n - k + 1)*A[n - 1, k - 1] + (3*k - 2)*k*A[n - 1, k]; Flatten[ Table[A[n, k], {n, 10}, {k, n}]] (* modified by G. C. Greubel, May 29 2016 *)
Comments