cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166977 Jacobsthal-Lucas numbers A014551, except a(0) = 0.

Original entry on oeis.org

0, 1, 5, 7, 17, 31, 65, 127, 257, 511, 1025, 2047, 4097, 8191, 16385, 32767, 65537, 131071, 262145, 524287, 1048577, 2097151, 4194305, 8388607, 16777217, 33554431, 67108865, 134217727, 268435457, 536870911, 1073741825, 2147483647
Offset: 0

Views

Author

Paul Curtz, Oct 26 2009

Keywords

Comments

The sequence (-1)^n*a(n) is the inverse binomial transform of A166956.
The main diagonal of the table of a(n) and its higher differences in successive rows is 0,4,8,16,32,.. , 4*A131577(n).

Programs

  • Mathematica
    Join[{0, 1}, LinearRecurrence[{1, 2}, {5, 7}, 50]] (* or *) Table[2^n + (-1)^n, {n,1,25}] (* G. C. Greubel, May 30 2016 *)

Formula

a(n) = A014551(n), n>0.
a(n) - A001045(n) = A097073(n), n>0.
a(n) - A001045(n) = 4*A001045(n-1).
a(n) = a(n-1) + 2*a(n-2), n>2.
G.f.: x*(1 + 4*x)/((1+x) * (1-2*x)).
a(n) = (-1)^n + 2^n for n>0. - Colin Barker, Jun 06 2012
E.g.f.: exp(2*x) + exp(-x) - 2. - G. C. Greubel, May 30 2016

Extensions

Edited and extended by R. J. Mathar, Mar 14 2010