cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A166998 G.f.: sqrt(C(x)^2 - S(x)^2) where C(x) = Sum_{n>=0} log(1 - 2^(2n)*x)^(2n)/(2n)! and S(x) = Sum_{n>=0} -log(1 - 2^(2n+1)*x)^(2n+1)/(2n+1)! are the g.f.s of A166995 and A166996, respectively.

Original entry on oeis.org

1, 0, 6, 28, 2684, 85664, 96848424, 18318978896, 459531493100736, 468613553577122688, 349607028167776160389536, 1788682277200384090414421312, 46561932503015793339090359576558496
Offset: 0

Views

Author

Paul D. Hanna, Nov 22 2009

Keywords

Examples

			G.f: 1 + 6*x^2 + 28*x^3 + 2684*x^4 + 85664*x^5 + 96848424*x^6 +...
which equals sqrt( C(x)^2 - S(x)^2 ) where
C(x) = 1 + 8*x^2 + 32*x^3 + 2848*x^4 + 87808*x^5 + 97425920*x^6 +...
S(x) = 2*x + 2*x^2 + 88*x^3 + 1028*x^4 + 289184*x^5 + 22451552*x^6 +...
Related expansions:
C(x) + S(x) = 1 + 2*x + 10*x^2 + 120*x^3 + 3876*x^4 + 376992*x^5 +...
C(x) - S(x) = 1 - 2*x + 6*x^2 - 56*x^3 + 1820*x^4 - 201376*x^5 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(sqrt(sum(k=0,n,log(1-2^(2*k)*x +x*O(x^n))^(2*k)/(2*k)!)^2-sum(k=0,n,log(1-2^(2*k+1)*x +x*O(x^n))^(2*k+1)/(2*k+1)!)^2),n)}

Formula

G.f.: sqrt([C(x)+S(x)]*[C(x)-S(x)]) where C(x) + S(x) = g.f. of A060690 and C(-x) - S(-x) = g.f. of A014070.
Self-convolution yields A166998.

A166997 G.f.: C(x)^2 - S(x)^2 where C(x) = Sum_{n>=0} log(1 - 2^(2n)*x)^(2n)/(2n)! and S(x) = Sum_{n>=0} -log(1 - 2^(2n+1)*x)^(2n+1)/(2n+1)! are the g.f.s of A166995 and A166996, respectively.

Original entry on oeis.org

1, 0, 12, 56, 5404, 171664, 193729840, 36639136064, 919064160383600, 937227332865348224, 699214061851483321467008, 3577364560049979516493456896, 93123865010226899737836259608990464
Offset: 0

Views

Author

Paul D. Hanna, Nov 22 2009

Keywords

Examples

			G.f: 1 + 12*x^2 + 56*x^3 + 5404*x^4 + 171664*x^5 + 193729840*x^6 +...
which equals C(x)^2 - S(x)^2 where
C(x) = 1 + 8*x^2 + 32*x^3 + 2848*x^4 + 87808*x^5 + 97425920*x^6 +...
S(x) = 2*x + 2*x^2 + 88*x^3 + 1028*x^4 + 289184*x^5 + 22451552*x^6 +...
Related expansions:
C(x) + S(x) = 1 + 2*x + 10*x^2 + 120*x^3 + 3876*x^4 + 376992*x^5 +...
C(x) - S(x) = 1 - 2*x + 6*x^2 - 56*x^3 + 1820*x^4 - 201376*x^5 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(sum(k=0,n,log(1-2^(2*k)*x +x*O(x^n))^(2*k)/(2*k)!)^2-sum(k=0,n,log(1-2^(2*k+1)*x +x*O(x^n))^(2*k+1)/(2*k+1)!)^2,n)}

Formula

G.f.: [C(x)+S(x)]*[C(x)-S(x)] where C(x) + S(x) = g.f. of A060690 and C(-x) - S(-x) = g.f. of A014070.
Self-convolution of A166998.

A166995 G.f.: C(x) = Sum_{n>=0} log(1 - 2^(2n)*x)^(2n)/(2n)!, a power series in x with integer coefficients.

Original entry on oeis.org

1, 0, 8, 32, 2848, 87808, 97425920, 18364346368, 459757145081856, 468713931103109120, 349620381018764380930048, 1788712998645738038832398336, 46562065744123901943395531497144320
Offset: 0

Views

Author

Paul D. Hanna, Nov 22 2009

Keywords

Examples

			G.f: C(x) = 1 + 8*x^2 + 32*x^3 + 2848*x^4 + 87808*x^5 + 97425920*x^6 +...
The g.f. of A166996 is S(x):
S(x) = Sum_{n>=0} -log(1 - 2^(2n+1)*x)^(2n+1)/(2n+1)!
S(x) = 2*x + 2*x^2 + 88*x^3 + 1028*x^4 + 289184*x^5 + 22451552*x^6 +...
where C(x) + S(x) = Sum_{n>=0} C(2^n + n - 1, n)*x^n ... (cf. A060690)
and C(x) - S(x) = Sum_{n>=0} C(2^n, n)*(-x)^n ... (cf. A014070).
Related expansions:
C(x) + S(x) = 1 + 2*x + 10*x^2 + 120*x^3 + 3876*x^4 + 376992*x^5 +...
C(x) - S(x) = 1 - 2*x + 6*x^2 - 56*x^3 + 1820*x^4 - 201376*x^5 +...
		

Crossrefs

Programs

  • Mathematica
    Table[(1/2)*(Binomial[2^n + n - 1, n ] + (-1)^n *Binomial[2^n, n]), {n, 0, 10}] (* G. C. Greubel, May 30 2016 *)
  • PARI
    {a(n)=polcoeff(sum(k=0,n,log(1-2^(2*k)*x +x*O(x^n))^(2*k)/(2*k)!),n)}
    
  • PARI
    {a(n)=(binomial(2^n + n-1, n) + (-1)^n*binomial(2^n, n))/2} \\ Paul D. Hanna, Nov 24 2009

Formula

a(n) = ( C(2^n + n-1, n) + (-1)^n*C(2^n, n) )/2. - Paul D. Hanna, Nov 24 2009
Showing 1-3 of 3 results.