cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A323305 Number of divisors of the number of prime factors of n counted with multiplicity.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 1, 3, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 3, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 3, 2, 3, 2, 2, 1, 3, 1, 2, 2, 4, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 3, 2, 1, 3, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Jan 13 2019

Keywords

Comments

a(1) = 1 by convention.
First differs from A036430 at a(64) = 4, A036430(64) = 3.

Crossrefs

Positions of 1's are 1 and the prime numbers A008578.
Positions of 2's are A063989.

Programs

  • Mathematica
    Array[Length@*Divisors@*PrimeOmega,100]
  • PARI
    a(n) = if (n==1, 1, numdiv(bigomega(n))); \\ Michel Marcus, Jan 13 2019

Formula

a(n) = A000005(A001222(n)).

A323350 Nonprime numbers > 1 whose number of prime factors counted with multiplicity is a perfect square.

Original entry on oeis.org

16, 24, 36, 40, 54, 56, 60, 81, 84, 88, 90, 100, 104, 126, 132, 135, 136, 140, 150, 152, 156, 184, 189, 196, 198, 204, 210, 220, 225, 228, 232, 234, 248, 250, 260, 276, 294, 296, 297, 306, 308, 315, 328, 330, 340, 342, 344, 348, 350, 351, 364, 372, 375, 376
Offset: 1

Views

Author

Gus Wiseman, Jan 15 2019

Keywords

Comments

First differs from A014613 in having 512.

Examples

			360 = 2*2*2*3*3*5 has 6 prime factors, and 6 is not a perfect square, so 360 does not belong to the sequence.
2160 = 2*2*2*2*3*3*3*5 has 8 prime factors, and 8 is not a perfect square, so 2160 does not belong to the sequence.
10800 = 2*2*2*2*3*3*3*5*5 has 9 prime factors, and 9 is a perfect square, so 10800 belongs to the sequence.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local t;
      t:= numtheory:-bigomega(n);
      t > 1 and issqr(t)
    end proc:
    select(filter, [$4..1000]); # Robert Israel, Jan 15 2019
  • Mathematica
    Select[Range[100],#>1&&!PrimeQ[#]&&IntegerQ[Sqrt[PrimeOmega[#]]]&]
  • PARI
    isok(n) = (n>1) && !isprime(n) && issquare(bigomega(n)); \\ Michel Marcus, Jan 15 2019

A192690 Nonprime numbers with a nonprime number of nonprime divisors.

Original entry on oeis.org

1, 12, 16, 18, 20, 24, 28, 40, 44, 45, 48, 50, 52, 54, 56, 60, 63, 64, 68, 72, 75, 76, 80, 81, 84, 88, 90, 92, 96, 98, 99, 104, 108, 112, 116, 117, 124, 126, 132, 135, 136, 140, 147, 148, 150, 152, 153, 156, 160, 162, 164, 171, 172, 175, 176, 180, 184, 188
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Oct 15 2011

Keywords

Examples

			For example, 12 is composite and it has 6 divisors: 1, 2, 3, 4, 6, 12. Of these, 4 are not prime: 1, 4, 6, 12. Since 4 is not prime either, 12 is in the sequence.
		

Crossrefs

Cf. A018252. - Omar E. Pol, Oct 20 2011

Programs

  • Mathematica
    NonPrimeDivisors[n_] := Length[Select[Divisors[n], ! PrimeQ[#] &]]; Select[Range[200], ! PrimeQ[#] && ! PrimeQ[NonPrimeDivisors[#]] &] (* T. D. Noe, Oct 20 2011 *)
  • SageMath
    def npd(n: int) -> int:
        return len([d for d in divisors(n) if not is_prime(d)])
    def isA192690(n: int) -> bool:
        return not (is_prime(n) or is_prime(npd(n)))
    A192690List = lambda b: [n for n in range(1, b) if isA192690(n)]
    print(A192690List(189))  # Peter Luschny, Apr 22 2025

A171995 Twin natural nonprimes with nonprime number of prime factors.

Original entry on oeis.org

1, 625, 1715, 1925, 2125, 2875, 2975, 3575, 3773, 4165, 4225, 4235, 4625, 5125, 5375, 5425, 5635, 5831, 5875, 5915, 6517, 6625, 7007, 7225, 7315, 7375, 7595, 7625, 7735, 7889, 7975, 8075, 8225, 8281, 8855, 8875, 9025, 9425, 9775, 9875, 10045, 10075
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jan 21 2010

Keywords

Comments

Intersection of A171697 and A167175. - R. J. Mathar, Mar 29 2010

Examples

			a(1)=1(without prime factors), a(2)=625(=5*5*5*5), a(3)=1715(=5*7*7*7).
		

Crossrefs

Programs

  • PARI
    isA171995(n)=n>0&!isprime(n)&((n%6==1&!isprime(n-2))||(n%6==5&!isprime(n+2)))&!isprime(bigomega(n))

Extensions

Edited and extended by Charles R Greathouse IV, Mar 29 2010
Showing 1-4 of 4 results.