A167181 Squarefree numbers such that all prime factors are == 3 mod 4.
1, 3, 7, 11, 19, 21, 23, 31, 33, 43, 47, 57, 59, 67, 69, 71, 77, 79, 83, 93, 103, 107, 127, 129, 131, 133, 139, 141, 151, 161, 163, 167, 177, 179, 191, 199, 201, 209, 211, 213, 217, 223, 227, 231, 237, 239, 249, 251, 253, 263, 271, 283, 301, 307, 309, 311, 321, 329
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Rafael Jakimczuk, Generalizations of Mertens's Formula and k-Free and s-Full Numbers with Prime Divisors in Arithmetic Progression, ResearchGate, 2024.
- V Sai Prabhav, Proof for the comment
Programs
-
Maple
N:= 1000: # to get all terms <= N S:= {1}; for p from 3 by 4 to N do if isprime(p) then S:= S union select(`<=`, map(t -> t*p, S),N) fi od: sort(convert(S,list)); # Robert Israel, Apr 18 2016
-
Mathematica
Select[Range@ 1000, #==1 || ({{3}, {1}} == Union /@ {Mod[ #[[1]], 4], #[[2]]} &@ Transpose@ FactorInteger@ #) &] (* Giovanni Resta, Apr 18 2016 *)
-
PARI
isok(n) = if (! issquarefree(n), return (0)); f = factor(n); for (i=1, #f~, if (f[i, 1] % 4 != 3, return (0))); 1 \\ Michel Marcus, Sep 04 2013
Formula
The number of terms that do not exceed x is ~ c * x / sqrt(log(x)), where c = A243379/(2*sqrt(A175647)) = 0.4165140462... (Jakimczuk, 2024, Theorem 3.10, p. 26). - Amiram Eldar, Mar 08 2024
Extensions
Edited by Zak Seidov, Oct 30 2009
Narrowed definition down to squarefree numbers - R. J. Mathar, Nov 05 2009
Comments