A167190 a(n) = 1 + 85*n + 2232*n^2 + 15276*n^3.
17594, 131307, 432796, 1013717, 1965726, 3380479, 5349632, 7964841, 11317762, 15500051, 20603364, 26719357, 33939686, 42356007, 52059976, 63143249, 75697482, 89814331, 105585452, 123102501, 142457134, 163741007, 187045776
Offset: 1
Examples
When x = 5 and y = i, f(x,y) = x^3 + 2xy + y^2 = 124 + 10i. The quotient of f(x + f(x,y), y + f(x,y))/(124 + 10i) is 17594 + 2664i.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
GAP
List([0..40], n-> 1 +85*n +2232*n^2 +15276*n^3); # G. C. Greubel, Sep 01 2019
-
Magma
I:=[17594, 131307, 432796, 1013717]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jul 02 2012
-
Maple
seq(1 + 85*n + 2232*n^2 + 15276*n^3, n=1..40); # G. C. Greubel, Sep 01 2019
-
Mathematica
CoefficientList[Series[(17594+60931*x+13132*x^2-x^3)/(x-1)^4,{x,0,40}],x] (* Vincenzo Librandi, Jul 02 2012 *) Table[1 +85*n +2232*n^2 +15276*n^3, {n,40}] (* G. C. Greubel, Sep 01 2019 *)
-
PARI
vector(40, n, 1 +85*n +2232*n^2 +15276*n^3) \\ G. C. Greubel, Sep 01 2019
-
Sage
[1 +85*n +2232*n^2 +15276*n^3 for n in (0..40)] # G. C. Greubel, Sep 01 2019
Formula
G.f.: x*(17594 + 60931*x + 13132*x^2 - x^3)/(1-x)^4 . - R. J. Mathar, Sep 02 2011
a(n) = +4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4). - R. J. Mathar, Sep 02 2011
E.g.f.: (1 + 17593*x + 48060*x^2 + 15276*x^3)*exp(x) -1. - G. C. Greubel, Apr 09 2016
Extensions
Extended beyond a(6) by R. J. Mathar, Nov 17 2009
Comments