A167217 Primes whose reversal + 1 is a square.
3, 53, 827, 3671, 5507, 8423, 8693, 30293, 42083, 42281, 42299, 53639, 57203, 59921, 80819, 326681, 345473, 345887, 348191, 361637, 387449, 420803, 422243, 510299, 511019, 551339, 574181, 590813, 593171, 804653, 806363, 808991, 829601, 863729, 867131, 888011
Offset: 1
Examples
53 is prime and 35 + 1 = 36 = 6^2. 827 is in the sequence because it is prime and reversal(827) + 1 = 728 + 1 = 729 = 27^2. - _K. D. Bajpai_, Jul 03 2014
Links
- Robert Israel and K. D. Bajpai, Table of n, a(n) for n = 1..10000 (first 506 entries from K. D. Bajpai)
Programs
-
Maple
Nd:= 4: # to get all entries with up to 2*Nd digits revdigs:= proc(x) local F,n,i; F:= convert(x,base,10); n:= nops(F); add(10^(n-i)*F[i],i=1..n); end: Sq:= remove(t -> (t mod 10 = 1), {seq(i^2,i=1..10^Nd-1)}): A:=map(proc(s) local r; r:= revdigs(s-1); if isprime(r) then r else NULL fi end proc, Sq); # Robert Israel, Jul 03 2014
-
Mathematica
Select[Prime[Range[10^5]], IntegerQ[Sqrt[FromDigits[Reverse[IntegerDigits[#]]] + 1]] &] (* K. D. Bajpai, Jul 03 2014 *)
Extensions
More terms from K. D. Bajpai, Jul 03 2014