A167338 Totally multiplicative sequence with a(p) = p*(p+1) = p^2+p for prime p.
1, 6, 12, 36, 30, 72, 56, 216, 144, 180, 132, 432, 182, 336, 360, 1296, 306, 864, 380, 1080, 672, 792, 552, 2592, 900, 1092, 1728, 2016, 870, 2160, 992, 7776, 1584, 1836, 1680, 5184, 1406, 2280, 2184, 6480, 1722, 4032, 1892, 4752, 4320, 3312, 2256, 15552
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] + 1)^fi[[All, 2]])); Table[a[n]*n, {n, 1, 100}] (* G. C. Greubel, Jun 06 2016 *)
-
PARI
for(n=1, 100, print1(direuler(p=2, n, (1 + 1/(1/X/p - p - 1))/(1 - p^2*X))[n], ", ")) \\ Vaclav Kotesovec, Apr 05 2023
Formula
Multiplicative with a(p^e) = (p*(p+1))^e.
If n = Product p(k)^e(k) then a(n) = Product (p(k)*(p(k)+1))^e(k).
a(n) = n * A003959(n).
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + 1/(p^2 + p - 1)) = A065489 = 1.419562880505485919317235861789735359166071586305122542698983695564330971... - Vaclav Kotesovec, Sep 20 2020
Sum_{k=1..n} a(k) ~ c * n^3, where c = (2/Pi^2) / Product_{p prime} (1 - 2/p^2 - 1/p^3) = 0.8913709085... . - Amiram Eldar, Dec 15 2022, c = A065488/3. - Vaclav Kotesovec, Apr 05 2023
Dirichlet g.f.: zeta(s-2) * Product_{p prime} (1 + 1/(p^(s-1) - p - 1)). - Vaclav Kotesovec, Apr 05 2023