A167339 Totally multiplicative sequence with a(p) = p*(p-2) = p^2-2p for prime p.
1, 0, 3, 0, 15, 0, 35, 0, 9, 0, 99, 0, 143, 0, 45, 0, 255, 0, 323, 0, 105, 0, 483, 0, 225, 0, 27, 0, 783, 0, 899, 0, 297, 0, 525, 0, 1295, 0, 429, 0, 1599, 0, 1763, 0, 135, 0, 2115, 0, 1225, 0
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A166586.
Programs
-
Mathematica
a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] - 2)^fi[[All, 2]])); Table[a[n]*n, {n, 1, 100}] (* G. C. Greubel, Jun 08 2016 *)
Formula
Multiplicative with a(p^e) = (p*(p-2))^e. If n = Product p(k)^e(k) then a(n) = Product (p(k)*(p(k)-2))^e(k).
a(2k) = 0 for k >= 1.
a(n) = n * A166586(n).
Sum_{k=1..n} a(k) ~ c * n^3, where c = (2/Pi^2) / Product_{p prime} (1 + 1/p^2 + 2/p^3) = 0.1016391193... . - Amiram Eldar, Dec 15 2022