A167346 Totally multiplicative sequence with a(p) = (p-1)*(p+2) = p^2+p-2 for prime p.
1, 4, 10, 16, 28, 40, 54, 64, 100, 112, 130, 160, 180, 216, 280, 256, 304, 400, 378, 448, 540, 520, 550, 640, 784, 720, 1000, 864, 868, 1120, 990, 1024, 1300, 1216, 1512, 1600, 1404, 1512, 1800, 1792, 1720, 2160, 1890, 2080, 2800, 2200, 2254, 2560, 2916, 3136
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] - 1)^fi[[All, 2]])); b[1] = 1; b[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] + 2)^fi[[All, 2]])); Table[a[n]*b[n], {n, 1, 100}] (* G. C. Greubel, Jun 10 2016 *) f[p_, e_] := ((p - 1)*(p + 2))^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 05 2022 *)
-
PARI
a(n) = {my(f = factor(n)); prod(i = 1, #f~, ((f[i,1]-1)*(f[i,1]+2))^f[i,2]); } \\ Amiram Eldar, Nov 05 2022
Formula
Multiplicative with a(p^e) = ((p-1)*(p+2))^e. If n = Product p(k)^e(k) then a(n) = Product ((p(k)-1)*(p(k)+2))^e(k).
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + 1/(p^2 + p - 3)) = 1.611922780552146990915794949248803526278171368254928942581015265238806543... - Vaclav Kotesovec, Sep 20 2020
Sum_{k=1..n} a(k) ~ c * n^3, where c = 2/(Pi^2 * Product_{p prime} (1 - 2/p^2 + 1/p^3 + 2/p^4)) = 0.3809790887... . - Amiram Eldar, Nov 05 2022