cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167351 Totally multiplicative sequence with a(p) = (p+1)*(p+2) = p^2+3p+2 for prime p.

Original entry on oeis.org

1, 12, 20, 144, 42, 240, 72, 1728, 400, 504, 156, 2880, 210, 864, 840, 20736, 342, 4800, 420, 6048, 1440, 1872, 600, 34560, 1764, 2520, 8000, 10368, 930, 10080, 1056, 248832, 3120, 4104, 3024, 57600, 1482, 5040, 4200, 72576, 1806, 17280, 1980, 22464
Offset: 1

Views

Author

Jaroslav Krizek, Nov 01 2009

Keywords

Programs

  • Mathematica
    a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] + 1)^fi[[All, 2]])); b[1] = 1; b[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] + 2)^fi[[All, 2]])); Table[a[n]*b[n], {n, 1, 100}] (* G. C. Greubel, Jun 10 2016 *)

Formula

Multiplicative with a(p^e) = ((p+1)*(p+2))^e. If n = Product p(k)^e(k) then a(n) = Product ((p(k)+1)*(p(k)+2))^e(k). a(n) = A003959(n) * A166590(n).
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + 1/(p^2 + 3*p + 1)) = 1.224476389903759550811745481197762941643093896189832037452375111814242433... - Vaclav Kotesovec, Sep 20 2020