A167351 Totally multiplicative sequence with a(p) = (p+1)*(p+2) = p^2+3p+2 for prime p.
1, 12, 20, 144, 42, 240, 72, 1728, 400, 504, 156, 2880, 210, 864, 840, 20736, 342, 4800, 420, 6048, 1440, 1872, 600, 34560, 1764, 2520, 8000, 10368, 930, 10080, 1056, 248832, 3120, 4104, 3024, 57600, 1482, 5040, 4200, 72576, 1806, 17280, 1980, 22464
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] + 1)^fi[[All, 2]])); b[1] = 1; b[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] + 2)^fi[[All, 2]])); Table[a[n]*b[n], {n, 1, 100}] (* G. C. Greubel, Jun 10 2016 *)
Formula
Multiplicative with a(p^e) = ((p+1)*(p+2))^e. If n = Product p(k)^e(k) then a(n) = Product ((p(k)+1)*(p(k)+2))^e(k). a(n) = A003959(n) * A166590(n).
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + 1/(p^2 + 3*p + 1)) = 1.224476389903759550811745481197762941643093896189832037452375111814242433... - Vaclav Kotesovec, Sep 20 2020