A167353 Totally multiplicative sequence with a(p) = (p+1)*(p+3) = p^2+4p+3 for prime p.
1, 15, 24, 225, 48, 360, 80, 3375, 576, 720, 168, 5400, 224, 1200, 1152, 50625, 360, 8640, 440, 10800, 1920, 2520, 624, 81000, 2304, 3360, 13824, 18000, 960, 17280, 1088, 759375, 4032, 5400, 3840, 129600, 1520, 6600, 5376, 162000, 1848, 28800
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] + 3)^fi[[All, 2]])); b[1] = 1; b[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] + 1)^fi[[All, 2]])); Table[a[n]*b[n], {n, 1, 100}] (* G. C. Greubel, Jun 11 2016 *)
Formula
Multiplicative with a(p^e) = ((p+1)*(p+3))^e. If n = Product p(k)^e(k) then a(n) = Product ((p(k)+1)*(p(k)+3))^e(k). a(n) = A003959(n) * A166591(n).
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + 1/(p^2 + 4*p + 2)) = 1.1854020769112984236586594287311260820805752130814044791625914047437286210... - Vaclav Kotesovec, Sep 20 2020