A167355 Totally multiplicative sequence with a(p) = (p-2)*(p+2) = p^2-4 for prime p.
1, 0, 5, 0, 21, 0, 45, 0, 25, 0, 117, 0, 165, 0, 105, 0, 285, 0, 357, 0, 225, 0, 525, 0, 441, 0, 125, 0, 837, 0, 957, 0, 585, 0, 945, 0, 1365, 0, 825, 0, 1677, 0, 1845, 0, 525, 0, 2205, 0, 2025, 0, 1425, 0, 2805, 0, 2457, 0, 1785, 0, 3477, 0, 3717, 0, 1125
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] + 2)^fi[[All, 2]])); b[1] = 1; b[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] - 2)^fi[[All, 2]])); Table[a[n]*b[n], {n, 1, 100}] (* G. C. Greubel, Jun 11 2016 *)
Formula
Multiplicative with a(p^e) = ((p-2)*(p+2))^e. If n = Product p(k)^e(k) then a(n) = Product ((p(k)-2)*(p(k)+2))^e(k).
a(2k) = 0 for k >= 1.
Sum_{k=1..n} a(k) ~ c * n^3, where c = (2/Pi^2) / Product_{p prime} (1 - 1/p^2 + 4/p^3 + 4/p^4) = 0.128353657048... . - Amiram Eldar, Dec 15 2022