A167356 Totally multiplicative sequence with a(p) = (p-2)*(p-3) = p^2-5p+6 for prime p.
1, 0, 0, 0, 6, 0, 20, 0, 0, 0, 72, 0, 110, 0, 0, 0, 210, 0, 272, 0, 0, 0, 420, 0, 36, 0, 0, 0, 702, 0, 812, 0, 0, 0, 120, 0, 1190, 0, 0, 0, 1482, 0, 1640, 0, 0, 0, 1980, 0, 400, 0, 0, 0, 2550, 0, 432, 0, 0, 0, 3192, 0, 3422, 0, 0, 0, 660, 0, 4160, 0, 0, 0
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] - 2)^fi[[All, 2]])); b[1] = 1; b[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] - 3)^fi[[All, 2]])); Table[a[n]*b[n], {n, 1, 100}] (* G. C. Greubel, Jun 11 2016 *)
Formula
Multiplicative with a(p^e) = ((p-2)*(p-3))^e. If n = Product p(k)^e(k) then a(n) = Product ((p(k)-2)*(p(k)-3))^e(k).
a(2k) = 0 for k >= 1, a(3k) = 0 for k >= 1.
Sum_{k=1..n} a(k) ~ c * n^3, where c = (2/Pi^2) / Product_{p prime} (1 + 4/p^2 - 1/p^3 - 6/p^4) = 0.073139277512... . - Amiram Eldar, Dec 15 2022