A167358 Totally multiplicative sequence with a(p) = (p+2)^2 = p^2+4p+4 for prime p.
1, 16, 25, 256, 49, 400, 81, 4096, 625, 784, 169, 6400, 225, 1296, 1225, 65536, 361, 10000, 441, 12544, 2025, 2704, 625, 102400, 2401, 3600, 15625, 20736, 961, 19600, 1089, 1048576, 4225, 5776, 3969, 160000, 1521, 7056, 5625, 200704, 1849, 32400, 2025, 43264
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A166590.
Programs
-
Mathematica
a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] + 2)^fi[[All, 2]])); Table[a[n]^2, {n, 1, 100}] (* G. C. Greubel, Jun 11 2016 *)
Formula
Multiplicative with a(p^e) = ((p+2)^2)^e. If n = Product p(k)^e(k) then a(n) = Product ((p(k)+2)^2)^e(k). a(n) = A166590(n)^2.
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + 1/(p^2 + 4*p + 3)) = 1.1773018966974266400752906612246691227245078032189833736353235503076639420... - Vaclav Kotesovec, Sep 20 2020