A167360 Totally multiplicative sequence with a(p) = (p+2)*(p+3) = p^2+5p+6 for prime p.
1, 20, 30, 400, 56, 600, 90, 8000, 900, 1120, 182, 12000, 240, 1800, 1680, 160000, 380, 18000, 462, 22400, 2700, 3640, 650, 240000, 3136, 4800, 27000, 36000, 992, 33600, 1122, 3200000, 5460, 7600, 5040, 360000, 1560, 9240, 7200, 448000, 1892, 54000, 2070
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] + 2)^fi[[All, 2]])); b[1] = 1; b[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] + 3)^fi[[All, 2]])); Table[a[n]*b[n], {n, 1, 100}] (* G. C. Greubel, Jun 11 2016 *)
Formula
Multiplicative with a(p^e) = ((p+2)*(p+3))^e. If n = Product p(k)^e(k) then a(n) = Product ((p(k)+2)*(p(k)+3))^e(k). a(n) = A166590(n) * A166591(n).
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + 1/(p^2 + 5*p + 5)) = 1.1480407951783735490090642594369977652983537687209929674246821640934042061... - Vaclav Kotesovec, Sep 20 2020