A167361 Totally multiplicative sequence with a(p) = (p-3)^2 = p^2-6p+9 for prime p.
1, 1, 0, 1, 4, 0, 16, 1, 0, 4, 64, 0, 100, 16, 0, 1, 196, 0, 256, 4, 0, 64, 400, 0, 16, 100, 0, 16, 676, 0, 784, 1, 0, 196, 64, 0, 1156, 256, 0, 4, 1444, 0, 1600, 64, 0, 400, 1936, 0, 256, 16, 0, 100, 2500, 0, 256, 16, 0, 676, 3136, 0, 3364, 784, 0, 1, 400
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A166589.
Programs
-
Mathematica
a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] - 3)^fi[[All, 2]])); Table[a[n]^2, {n, 1, 100}] (* G. C. Greubel, Jun 11 2016 *)
Formula
Multiplicative with a(p^e) = ((p-3)^2)^e. If n = Product p(k)^e(k) then a(n) = Product ((p(k)-3)^2)^e(k).
a(3k) = 0 for k >= 1.
a(n) = A166589(n)^2.
Sum_{k=1..n} a(k) ~ c * n^3, where c = (2/Pi^2) / Product_{p prime} (1 + 5/p^2 - 3/p^3 - 9/p^4) = 0.07909568395... . - Amiram Eldar, Dec 15 2022