A167374 Triangle, read by rows, given by [ -1,1,0,0,0,0,0,0,0,...] DELTA [1,0,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.
1, -1, 1, 0, -1, 1, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1
Offset: 0
Examples
Triangle begins: 1; -1, 1; 0, -1, 1; 0, 0, -1, 1; 0, 0, 0, -1, 1; 0, 0, 0, 0, -1, 1; ... Row number r (r>4) contains (r-2) times '0', then '-1' and '1'. From _Boris Putievskiy_, Jan 17 2013: (Start) The start of the sequence as a table: 1 -1 0 0 0 0 0 ... 1 -1 0 0 0 0 0 ... 1 -1 0 0 0 0 0 ... 1 -1 0 0 0 0 0 ... 1 -1 0 0 0 0 0 ... 1 -1 0 0 0 0 0 ... 1 -1 0 0 0 0 0 ... ... (End)
Links
- Boris Putievskiy, Transformations [of] Integer Sequences And Pairing Functions arXiv:1212.2732 [math.CO], 2012.
Programs
-
Maple
A167374 := proc(n,k) if k> n or k < n-1 then 0; elif k = n then 1; else -1 ; end if; end proc: # R. J. Mathar, Sep 07 2016
-
Mathematica
Table[PadLeft[{-1, 1}, n], {n, 13}] // Flatten (* or *) MapIndexed[Take[#1, First@ #2] &, CoefficientList[Series[(1 - x)/(1 - x y), {x, 0, 12}], {x, y}]] // Flatten (* Michael De Vlieger, Nov 16 2016 *) T[n_, k_] := If[ k<0 || k>n, 0, Boole[n==k] - Boole[n==k+1]]; (* Michael Somos, Oct 01 2022 *)
-
PARI
{T(n, k) = if( k<0 || k>n, 0, (n==k) - (n==k+1))}; /* Michael Somos, Oct 01 2022 */
Formula
Sum_{k, 0<=k<=n} T(n,k)*x^k = A000007(n), A011782(n), A025192(n), A002001(n), A005054(n), A052934(n), A055272(n), A055274(n), A055275(n), A055268(n), A055276(n) for x = 1,2,3,4,5,6,7,8,9,10,11 respectively .
From Boris Putievskiy, Jan 17 2013: (Start)
a(n) = floor((i+2)/(t+2))*(-1)^(i+t+1), n > 0, where
i = n - t*(t+1)/2,
t = floor((-1 + sqrt(8*n-7))/2). (End)
T*A000012 = Identity matrix. T*A007318 = A097805. T*(A007318)^(-1)= signed A029653. - Tom Copeland, Mar 26 2014
G.f.: (1-x)/(1-x*y). - R. J. Mathar, Aug 11 2015
Comments