cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A018917 Define the generalized Pisot sequence T(a(0),a(1)) by: a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n). This is T(3,5).

Original entry on oeis.org

3, 5, 8, 12, 17, 24, 33, 45, 61, 82, 110, 147, 196, 261, 347, 461, 612, 812, 1077, 1428, 1893, 2509, 3325, 4406, 5838, 7735, 10248, 13577, 17987, 23829, 31568, 41820, 55401, 73392, 97225, 128797, 170621, 226026, 299422, 396651, 525452, 696077, 922107
Offset: 0

Views

Author

Keywords

Comments

Not to be confused with the Pisot T(3,5) sequence, which is A020745. - R. J. Mathar, Feb 13 2016
Is 1 followed by this sequence equal to A167385? - Bruno Berselli, Feb 17 2016

Programs

  • Magma
    Tiv:=[3,5]; [n le 2 select Tiv[n] else Ceiling(Self(n-1)^2/Self(n-2))-1: n in [1..50]]; // Bruno Berselli, Feb 17 2016
  • Mathematica
    RecurrenceTable[{a[1] == 3, a[2] == 5, a[n] == Ceiling[a[n-1]^2/a[n-2]] - 1}, a, {n, 50}] (* Bruno Berselli, Feb 17 2016 *)
  • PARI
    T(a0, a1, maxn) = a=vector(maxn); a[1]=a0; a[2]=a1; for(n=3, maxn, a[n]=ceil(a[n-1]^2/a[n-2])-1); a
    T(3, 5, 60) \\ Colin Barker, Feb 14 2016
    

Formula

Conjecture: a(n)=a(n-1)+a(n-2)-a(n-4). G.f.: (3+2*x-x^3)/(1-x)/(1-x^2-x^3). [Colin Barker, Feb 16 2012]
Conjecture: a(n) = a(n-1) + A000931(n+8). - Reinhard Zumkeller, Dec 30 2012
Showing 1-1 of 1 results.