cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A235147 Primes p such that (p reversed)+3 is also a prime.

Original entry on oeis.org

2, 41, 43, 61, 67, 83, 89, 401, 409, 421, 431, 433, 439, 443, 449, 457, 461, 463, 479, 487, 491, 499, 601, 607, 617, 619, 631, 641, 643, 653, 673, 683, 691, 809, 821, 823, 839, 857, 881, 4027, 4057, 4091, 4093, 4099, 4111, 4153, 4157, 4177, 4217, 4219, 4229
Offset: 1

Views

Author

Vincenzo Librandi, Jan 04 2014

Keywords

Examples

			43 is in the sequence because 34+3=37 is prime.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(6000) | IsPrime(q+3) where q is Seqint(Reverse(Intseq(p)))];
  • Mathematica
    Select[Prime[Range[6000]], PrimeQ[FromDigits[Reverse[IntegerDigits[#]]] + 3]&]

A235148 Primes p such that (p reversed) + 5 is also a prime.

Original entry on oeis.org

2, 23, 29, 41, 47, 83, 89, 227, 233, 239, 251, 257, 263, 269, 293, 401, 419, 431, 443, 467, 491, 641, 647, 827, 863, 881, 2027, 2063, 2099, 2111, 2153, 2207, 2273, 2297, 2339, 2357, 2441, 2459, 2543, 2609, 2687, 2693, 2699, 2729, 2801, 2819, 2879, 2927, 2939, 2963
Offset: 1

Views

Author

Vincenzo Librandi, Jan 04 2014

Keywords

Examples

			47 is in the sequence because 74+5=79 is prime.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(6000) | IsPrime(q + 5) where q is Seqint(Reverse(Intseq(p)))];
  • Mathematica
    Select[Prime[Range[6000]], PrimeQ[FromDigits[Reverse[IntegerDigits[#]]] + 5]&]

A235149 Primes p such that (p reversed) + 7 is also a prime.

Original entry on oeis.org

43, 61, 67, 229, 241, 271, 283, 409, 421, 439, 457, 601, 643, 661, 673, 2011, 2017, 2029, 2113, 2131, 2161, 2179, 2221, 2269, 2287, 2293, 2341, 2389, 2437, 2467, 2521, 2551, 2557, 2707, 2749, 2791, 2803, 2833, 2857, 4003, 4027, 4051, 4093, 4129, 4159, 4201, 4339, 4357
Offset: 1

Views

Author

Vincenzo Librandi, Jan 04 2014

Keywords

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(6000) | IsPrime(q+7) where q is Seqint(Reverse(Intseq(p)))];
  • Mathematica
    Select[Prime[Range[6000]], PrimeQ[FromDigits[Reverse[IntegerDigits[#]]] + 7]&]
    Select[Prime[Range[600]],PrimeQ[IntegerReverse[#]+7]&] (* Harvey P. Dale, May 20 2023 *)

A235150 Primes p such that (p reversed) + 9 is also a prime.

Original entry on oeis.org

2, 23, 29, 41, 43, 47, 83, 89, 223, 239, 241, 257, 269, 271, 281, 293, 401, 443, 449, 461, 463, 467, 479, 811, 821, 823, 829, 839, 853, 859, 877, 881, 883, 887, 2003, 2027, 2039, 2053, 2081, 2089, 2113, 2129, 2131, 2137, 2161, 2179, 2221, 2237, 2251, 2269, 2281
Offset: 1

Views

Author

Vincenzo Librandi, Jan 04 2014

Keywords

Examples

			83 is in the sequence because 38+9=47 is prime.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(4000) | IsPrime(q+9) where q is Seqint(Reverse(Intseq(p)))];
  • Mathematica
    Select[Prime[Range[4000]], PrimeQ[FromDigits[Reverse[IntegerDigits[#]]] + 9]&]
Showing 1-4 of 4 results.