A167541 a(n) = -(n - 4)*(n - 5)*(n - 12)/6.
2, 5, 8, 10, 10, 7, 0, -12, -30, -55, -88, -130, -182, -245, -320, -408, -510, -627, -760, -910, -1078, -1265, -1472, -1700, -1950, -2223, -2520, -2842, -3190, -3565, -3968, -4400, -4862, -5355, -5880, -6438, -7030, -7657, -8320, -9020, -9758, -10535, -11352
Offset: 6
Links
- Index entries for linear recurrences with constant coefficients, signature (4, -6, 4, -1).
Programs
-
Mathematica
LinearRecurrence[{4,-6,4,-1},{2,5,8,10},50] (* Harvey P. Dale, May 27 2012 *)
Formula
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
G.f.: x^6*(2 - 3*x)/(x - 1)^4.
a(n) = -A111396(n-12) for n > 11. - Bruno Berselli, Oct 02 2018
Extensions
Minor edits by N. J. A. Sloane, Nov 09 2009
Definition simplified, sequence extended by R. J. Mathar, Nov 12 2009
Comments