A167544 a(n) = (n-3)*(n-8)/2.
-2, -3, -3, -2, 0, 3, 7, 12, 18, 25, 33, 42, 52, 63, 75, 88, 102, 117, 133, 150, 168, 187, 207, 228, 250, 273, 297, 322, 348, 375, 403, 432, 462, 493, 525, 558, 592, 627, 663, 700, 738, 777, 817, 858, 900, 943, 987, 1032, 1078, 1125, 1173
Offset: 4
Links
- G. C. Greubel, Table of n, a(n) for n = 4..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[(n-3)*(n-8)/2: n in [4..60]]; // G. C. Greubel, Jul 30 2022
-
Mathematica
Table[(n-3)*(n-8)/2, {n,4,60}] (* G. C. Greubel, Jun 15 2016 *)
-
PARI
a(n)=(n-3)*(n-8)/2 \\ Charles R Greathouse IV, Jun 17 2017
-
SageMath
[(n-3)*(n-8)/2 for n in (4..60)] # G. C. Greubel, Jul 30 2022
Formula
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: x^4*(-2 + 3*x)/(1-x)^3.
a(n) = A055998(n-8). - Philippe Deléham, Nov 25 2009
a(n) = a(n-1) + n - 6 (with a(4)=-2). - Vincenzo Librandi, Dec 05 2010
a(n) = A027379(n-8) for n >= 9. - Georg Fischer, Oct 24 2018
E.g.f.: (1/2)*( (24 -10*x + x^2)*exp(x) - (24 + 14*x + 3*x^2) ). - G. C. Greubel, Jul 30 2022
Extensions
Edited and extended by R. J. Mathar, Nov 12 2009
Comments