cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167566 The third left hand column of triangle A167565.

Original entry on oeis.org

2, 16, 67, 202, 497, 1064, 2058, 3684, 6204, 9944, 15301, 22750, 32851, 46256, 63716, 86088, 114342, 149568, 192983, 245938, 309925, 386584, 477710, 585260, 711360, 858312, 1028601, 1224902, 1450087, 1707232, 1999624, 2330768, 2704394
Offset: 3

Views

Author

Johannes W. Meijer, Nov 10 2009

Keywords

Crossrefs

Equals the third left hand column of triangle A167565.
Other left hand columns are A000027, A000292, A167567 and A168304.

Programs

  • Mathematica
    Table[(7*n^5 - 30*n^4 + 45*n^3 - 30*n^2 + 8*n)/5!, {n,3,100}] (* or *) LinearRecurrence[{6,-15,20,-15,6,-1}, {2, 16, 67, 202, 497, 1064}, 100] (* G. C. Greubel, Jun 16 2016 *)
  • PARI
    Vec((1*z^2 + 4*z + 2)/(1-z)^6 + O(z^50)) \\ Michel Marcus, Jul 05 2017
    
  • PARI
    a(n) = n*(7*n^4 - 30*n^3 + 45*n^2 - 30*n + 8)/120 \\ Charles R Greathouse IV, Jul 14 2017

Formula

From Johannes W. Meijer, Nov 23 2009: (Start)
a(n) = (7*n^5 - 30*n^4 + 45*n^3 - 30*n^2 + 8*n)/5!.
G.f.: (1*z^2 + 4*z + 2)/(1-z)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).
a(n) - 5*a(n-1) + 10*a(n-2) - 10*a(n-3) + 5*a(n-4) - a(n-5) = 7. (End)
a(n) = A024166(n-2) + A000389(n+2). - J. M. Bergot, Jul 04 2017