A167566 The third left hand column of triangle A167565.
2, 16, 67, 202, 497, 1064, 2058, 3684, 6204, 9944, 15301, 22750, 32851, 46256, 63716, 86088, 114342, 149568, 192983, 245938, 309925, 386584, 477710, 585260, 711360, 858312, 1028601, 1224902, 1450087, 1707232, 1999624, 2330768, 2704394
Offset: 3
Links
- G. C. Greubel, Table of n, a(n) for n = 3..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Crossrefs
Programs
-
Mathematica
Table[(7*n^5 - 30*n^4 + 45*n^3 - 30*n^2 + 8*n)/5!, {n,3,100}] (* or *) LinearRecurrence[{6,-15,20,-15,6,-1}, {2, 16, 67, 202, 497, 1064}, 100] (* G. C. Greubel, Jun 16 2016 *)
-
PARI
Vec((1*z^2 + 4*z + 2)/(1-z)^6 + O(z^50)) \\ Michel Marcus, Jul 05 2017
-
PARI
a(n) = n*(7*n^4 - 30*n^3 + 45*n^2 - 30*n + 8)/120 \\ Charles R Greathouse IV, Jul 14 2017
Formula
From Johannes W. Meijer, Nov 23 2009: (Start)
a(n) = (7*n^5 - 30*n^4 + 45*n^3 - 30*n^2 + 8*n)/5!.
G.f.: (1*z^2 + 4*z + 2)/(1-z)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).
a(n) - 5*a(n-1) + 10*a(n-2) - 10*a(n-3) + 5*a(n-4) - a(n-5) = 7. (End)